Maple 2018.2 Integration Test Results
on the problems in "2 Exponentials"
Test results for the 27 problems in " 2.1 u ($\left.\mathrm{F}^{\wedge}(\mathrm{c}(\mathrm{a}+\mathrm{b} \mathrm{x}))\right)^{\wedge} \mathrm{n} . \mathrm{tx} \mathrm{t}$ "
Problem 1: Unable to integrate problem.

$$
\int F^{c(b x+a)}(e x+d)^{m} \mathrm{~d} x
$$

Optimal(type 4, 67 leaves, 1 step):

$$
\frac{F^{c\left(a-\frac{b d}{e}\right)}(e x+d)^{m} \Gamma\left(1+m,-\frac{b c(e x+d) \ln (F)}{e}\right)}{b c \ln (F)\left(-\frac{b c(e x+d) \ln (F)}{e}\right)^{m}}
$$

Result(type 8, 19 leaves):

$$
\int F^{c(b x+a)}(e x+d)^{m} \mathrm{~d} x
$$

Problem 9: Unable to integrate problem.

$$
\int F^{c(b x+a)}\left((e x+d)^{n}\right)^{m} \mathrm{~d} x
$$

Optimal(type 4, 73 leaves, 2 steps):

$$
\frac{F^{c\left(a-\frac{b d}{e}\right)}\left((e x+d)^{n}\right)^{m} \Gamma\left(m n+1,-\frac{b c(e x+d) \ln (F)}{e}\right)}{b c \ln (F)\left(-\frac{b c(e x+d) \ln (F)}{e}\right)^{m n}}
$$

Result(type 8, 21 leaves):

$$
\int F^{c(b x+a)}\left((e x+d)^{n}\right)^{m} \mathrm{~d} x
$$

Problem 10: Unable to integrate problem.

$$
\int F^{c(b x+a)}(e x+d)^{m} \mathrm{~d} x
$$

Optimal(type 4, 67 leaves, 1 step):

$$
\frac{F^{c\left(a-\frac{b d}{e}\right)}(e x+d)^{m} \Gamma\left(1+m,-\frac{b c(e x+d) \ln (F)}{e}\right)}{b c \ln (F)\left(-\frac{b c(e x+d) \ln (F)}{e}\right)^{m}}
$$

Result(type 8, 19 leaves):

$$
\int F^{c(b x+a)}(e x+d)^{m} \mathrm{~d} x
$$

Problem 13: Unable to integrate problem.

$$
\int F^{c(b x+a)}(e x+d)^{7 / 2} \mathrm{~d} x
$$

Optimal(type 4, 172 leaves, 6 steps):

$$
\begin{aligned}
& \frac{35 e^{2} F^{c(b x+a)}(e x+d)^{3 / 2}}{4 b^{3} c^{3} \ln (F)^{3}}-\frac{7 e F^{c(b x+a)}(e x+d)^{5 / 2}}{2 b^{2} c^{2} \ln (F)^{2}}+\frac{F^{c(b x+a)}(e x+d)^{7 / 2}}{b c \ln (F)}+\frac{105 e^{7 / 2} F^{c\left(a-\frac{b d}{e}\right)} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{c} \sqrt{e x+d} \sqrt{\ln (F)}) \sqrt{\pi}}{\sqrt{e}}\right.}{\quad-\frac{105 e^{3} F^{c(b x+a)} \sqrt{e x+d}}{8 b^{4} c^{4} \ln (F)^{4}}}
\end{aligned}
$$

Result(type 8, 19 leaves):

$$
\int F^{c(b x+a)}(e x+d)^{7 / 2} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int F^{c(b x+a)}(e x+d)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 110 leaves, 4 steps):

$$
\frac{F^{c(b x+a)}(e x+d)^{3 / 2}}{b c \ln (F)}+\frac{3 e^{3 / 2} F^{c\left(a-\frac{b d}{e}\right)} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{c} \sqrt{e x+d} \sqrt{\ln (F)}) \sqrt{\pi}}{\sqrt{e}}\right)}{4 b^{5 / 2} c^{5 / 2} \ln (F)^{5 / 2}}-\frac{3 e F^{c(b x+a)} \sqrt{e x+d}}{2 b^{2} c^{2} \ln (F)^{2}}
$$

Result(type 8, 19 leaves):

$$
\int F^{c(b x+a)}(e x+d)^{3 / 2} \mathrm{~d} x
$$

Problem 15: Unable to integrate problem.

$$
\int \frac{F^{c(b x+a)}}{(e x+d)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 100 leaves, 4 steps):

$$
-\frac{2 F^{c(b x+a)}}{3 e(e x+d)^{3 / 2}}+\frac{4 b^{3 / 2} c^{3 / 2} F^{c\left(a-\frac{b d}{e}\right)} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{c} \sqrt{e x+d} \sqrt{\ln (F)}) \ln (F)^{3 / 2} \sqrt{\pi}}{\sqrt{e}}\right)}{3 e^{5 / 2}}-\frac{4 b c F^{c(b x+a)} \ln (F)}{3 e^{2} \sqrt{e x+d}}
$$

Result(type 8, 19 leaves):

$$
\int \frac{F^{c(b x+a)}}{(e x+d)^{5 / 2}} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{F^{c(b x+a)}}{(e x+d)^{9 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 162 leaves, 6 steps):

$$
\begin{aligned}
& -\frac{2 F^{c(b x+a)}}{7 e(e x+d)^{7 / 2}}-\frac{4 b c F^{c(b x+a)} \ln (F)}{35 e^{2}(e x+d)^{5 / 2}}-\frac{8 b^{2} c^{2} F^{c(b x+a)} \ln (F)^{2}}{105 e^{3}(e x+d)^{3 / 2}}+\frac{16 b^{7 / 2} c^{7 / 2} F^{c\left(a-\frac{b d}{e}\right)} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{c} \sqrt{e x+d} \sqrt{\ln (F)}) \ln (F)^{7 / 2} \sqrt{\pi}}{105 e^{9 / 2}}\right.}{\quad-\frac{16 b^{3} c^{3} F^{c(b x+a)} \ln (F)^{3}}{105 e^{4} \sqrt{e x+d}}} \\
& \quad \begin{array}{l}
\text { Result (type 8, } 19 \text { leaves) : } \\
\\
\quad \int \frac{F^{c(b x+a)}}{(e x+d)^{9 / 2}} \mathrm{~d} x
\end{array}
\end{aligned}
$$

Problem 17: Unable to integrate problem.

$$
\int F^{c(b x+a)}(e x+d)^{4 / 3} \mathrm{~d} x
$$

Optimal(type 4, 65 leaves, 1 step):

$$
-\frac{e^{c} F^{c\left(a-\frac{b d}{e}\right)}(e x+d)^{1 / 3} \Gamma\left(\frac{7}{3},-\frac{b c(e x+d) \ln (F)}{e}\right)}{b^{2} c^{2} \ln (F)^{2}\left(-\frac{b c(e x+d) \ln (F)}{e}\right)^{1 / 3}}
$$

Result(type 8, 19 leaves):

$$
\int F^{c(b x+a)}(e x+d)^{4 / 3} \mathrm{~d} x
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int F^{a+b(d x+c)} x^{m}(f x+e)^{2} \mathrm{~d} x
$$

Optimal(type 4, 139 leaves, 5 steps):

$$
\frac{f^{2} F^{b c+a} x^{m} \Gamma(3+m,-b d x \ln (F))}{b^{3} d^{3} \ln (F)^{3}(-b d x \ln (F))^{m}}-\frac{2 e f F^{b c+a} x^{m} \Gamma(2+m,-b d x \ln (F))}{b^{2} d^{2} \ln (F)^{2}(-b d x \ln (F))^{m}}+\frac{e^{2} F^{b c+a} x^{m} \Gamma(1+m,-b d x \ln (F))}{b d \ln (F)(-b d x \ln (F))^{m}}
$$

Result(type 4, 432 leaves):

$$
\begin{aligned}
& -\frac{1}{d^{3} b^{3}}\left(\operatorname { l n } (F) ^ { - 3 - m } (- d b) ^ { - m } F ^ { b c + a } f ^ { 2 } \left(x^{m}(-d b)^{m} \ln (F)^{m} m\left(m^{2}+3 m+2\right) \Gamma(m)(-b d x \ln (F))^{-m}-x^{m}(-d b)^{m} \ln (F)^{m}\left(b^{2} d^{2} x^{2} \ln (F)^{2}-m b d x \ln (F)\right.\right.\right. \\
& \left.\left.\left.\quad+m^{2}-2 b d x \ln (F)+3 m+2\right) \mathrm{e}^{b d x \ln (F)}-x^{m}(-d b)^{m} \ln (F)^{m} m\left(m^{2}+3 m+2\right)(-b d x \ln (F))^{-m} \Gamma(m,-b d x \ln (F))\right)\right) \\
& \quad+\frac{1}{d^{2} b^{2}}\left(2 \operatorname { l n } (F) ^ { - m - 2 } (- d b) ^ { - m } F ^ { b c + a } f e \left(x^{m}(-d b)^{m} \ln (F)^{m}(1+m) m \Gamma(m)(-b d x \ln (F))^{-m}+x^{m}(-d b)^{m} \ln (F)^{m}(b d x \ln (F)-m-1) \mathrm{e}^{b d x \ln (F)}\right.\right. \\
& \left.\left.\quad-x^{m}(-d b)^{m} \ln (F)^{m}(1+m) m(-b d x \ln (F))^{-m} \Gamma(m,-b d x \ln (F))\right)\right)-\frac{1}{d b}\left(F ^ { b c + a } (- d b) ^ { - m } \operatorname { l n } (F) ^ { - m - 1 } e ^ { 2 } \left(x^{m}(-d b)^{m} \ln (F)^{m} m \Gamma(m)(\right.\right. \\
& \left.\left.\quad-b d x \ln (F))^{-m}-x^{m}(-d b)^{m} \ln (F)^{m} \mathrm{e}^{b d x \ln (F)}-x^{m}(-d b)^{m} \ln (F)^{m} m(-b d x \ln (F))^{-m} \Gamma(m,-b d x \ln (F))\right)\right)
\end{aligned}
$$

Test results for the 27 problems in "2.2 (c+d $x)^{\wedge} m\left(F^{\wedge}(g(e+f x))\right)^{\wedge} n\left(a+b \quad\left(F^{\wedge}(g(e+f x))\right)^{\wedge} n\right)^{\wedge} p . t x t^{\prime \prime}$
Problem 2: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{a+b \mathrm{e}^{d x+c}} \mathrm{~d} x
$$

Optimal(type 4, 54 leaves, 4 steps):

$$
\frac{x^{2}}{2 a}-\frac{x \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a d}-\frac{\operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a d^{2}}
$$

Result(type 4, 132 leaves):

$$
\frac{x^{2}}{2 a}+\frac{x c}{d a}+\frac{c^{2}}{2 d^{2} a}-\frac{x \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a d}-\frac{c \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{d^{2} a}-\frac{\operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a d^{2}}-\frac{c \ln \left(\mathrm{e}^{d x+c}\right)}{d^{2} a}+\frac{c \ln \left(a+b \mathrm{e}^{d x+c}\right)}{d^{2} a}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{\left(a+b \mathrm{e}^{d x+c}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 157 leaves, 11 steps):
$-\frac{x^{2}}{a^{2} d}+\frac{x^{2}}{a d\left(a+b \mathrm{e}^{d x+c}\right)}+\frac{x^{3}}{3 a^{2}}+\frac{2 x \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{2}}-\frac{x^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d}+\frac{2 \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{3}}-\frac{2 x \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{2}}$
$+\frac{2 \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{3}}$
Result(type 4, 323 leaves):
$\frac{x^{2}}{a d\left(a+b \mathrm{e}^{d x+c}\right)}+\frac{c^{2} \ln \left(\mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}-\frac{c^{2} \ln \left(a+b \mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}+\frac{x^{3}}{3 a^{2}}-\frac{c^{2} x}{a^{2} d^{2}}-\frac{2 c^{3}}{3 a^{2} d^{3}}-\frac{x^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d}+\frac{\ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right) c^{2}}{a^{2} d^{3}}$

$$
\begin{aligned}
& -\frac{2 x \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{2}}+\frac{2 \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{3}}+\frac{2 c \ln \left(\mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}-\frac{2 c \ln \left(a+b \mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}-\frac{x^{2}}{a^{2} d}-\frac{2 c x}{a^{2} d^{2}}-\frac{c^{2}}{a^{2} d^{3}}+\frac{2 x \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{2}} \\
& +\frac{2 \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right) c}{a^{2} d^{3}}+\frac{2 \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{2} d^{3}}
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\left(a+b \mathrm{e}^{d x+c}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 143 leaves, 15 steps):

$$
\begin{aligned}
& -\frac{1}{2 a^{2} d^{2}\left(a+b \mathrm{e}^{d x+c}\right)}-\frac{3 x}{2 a^{3} d}+\frac{x}{2 a d\left(a+b \mathrm{e}^{d x+c}\right)^{2}}+\frac{x}{a^{2} d\left(a+b \mathrm{e}^{d x+c}\right)}+\frac{x^{2}}{2 a^{3}}+\frac{3 \ln \left(a+b \mathrm{e}^{d x+c}\right)}{2 a^{3} d^{2}}-\frac{x \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{3} d} \\
& \quad-\frac{\operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a}\right)}{a^{3} d^{2}}
\end{aligned}
$$

Result(type 4, 392 leaves):

$$
\begin{aligned}
& -\frac{1}{2 a^{2} d^{2}\left(a+b \mathrm{e}^{d x+c}\right)}+\frac{3 \ln \left(a+b \mathrm{e}^{d x+c}\right)}{2 a^{3} d^{2}}-\frac{b^{2}\left(\mathrm{e}^{d x+c}\right)^{2} x}{2 d a^{3}\left(a+b \mathrm{e}^{d x+c}\right)^{2}}-\frac{b^{2}\left(\mathrm{e}^{d x+c}\right)^{2} c}{2 d^{2} a^{3}\left(a+b \mathrm{e}^{d x+c}\right)^{2}}-\frac{b \mathrm{e}^{d x+c} x}{d a^{2}\left(a+b \mathrm{e}^{d x+c}\right)^{2}}-\frac{b \mathrm{e}^{d x+c} c}{d^{2} a^{2}\left(a+b \mathrm{e}^{d x+c}\right)^{2}}+\frac{x^{2}}{2 a^{3}} \\
& \quad+\frac{x c}{d a^{3}}+\frac{c^{2}}{2 d^{2} a^{3}}-\frac{b \mathrm{e}^{d x+c} x}{d a^{3}\left(a+b \mathrm{e}^{d x+c}\right)}-\frac{b \mathrm{e}^{d x+c} c}{d^{2} a^{3}\left(a+b \mathrm{e}^{d x+c}\right)}-\frac{\operatorname{dilog}\left(\frac{a+b \mathrm{e}^{d x+c}}{a}\right)}{d^{2} a^{3}}-\frac{\ln \left(\frac{a+b \mathrm{e}^{d x+c}}{a}\right) x}{d a^{3}}-\frac{\ln \left(\frac{a+b \mathrm{e}^{d x+c}}{a}\right) c}{d^{2} a^{3}} \\
& -\frac{c \ln \left(\mathrm{e}^{d x+c}\right)}{d^{2} a^{3}}+\frac{c \ln \left(a+b \mathrm{e}^{d x+c}\right)}{d^{2} a^{3}}-\frac{c}{d^{2} a^{2}\left(a+b \mathrm{e}^{d x+c}\right)}-\frac{c}{2 d^{2} a\left(a+b \mathrm{e}^{d x+c}\right)^{2}}
\end{aligned}
$$

Problem 11: Unable to integrate problem.

$$
\int \frac{a+b\left(F^{g(f x+e)}\right)^{n}}{d x+c} \mathrm{~d} x
$$

Optimal(type 4, 68 leaves, 4 steps):

$$
\frac{b F^{\left(e-\frac{f c}{d}\right) g n-g n(f x+e)}\left(F^{f g x+e g}\right)^{n} \operatorname{Ei}\left(\frac{f g n(d x+c) \ln (F)}{d}\right)}{d}+\frac{a \ln (d x+c)}{d}
$$

Result(type 8, 25 leaves):

$$
\int \frac{a+b\left(F^{g(f x+e)}\right)^{n}}{d x+c} \mathrm{~d} x
$$

Problem 13: Unable to integrate problem.

$$
\int\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}(d x+c)^{3} \mathrm{~d} x
$$

Optimal(type 3, 478 leaves, 14 steps):

$$
\begin{aligned}
& \frac{a^{3}(d x+c)^{4}}{4 d}-\frac{18 a^{2} b d^{3}\left(F^{f g x+e g}\right)^{n}}{f^{4} g^{4} n^{4} \ln (F)^{4}}-\frac{9 a b^{2} d^{3}\left(F^{f g} g+e g\right)^{2 n}}{8 f^{4} g^{4} n^{4} \ln (F)^{4}}-\frac{2 b^{3} d^{3}\left(F^{f g x+e g}\right)^{3 n}}{27 f^{4} g^{4} n^{4} \ln (F)^{4}}+\frac{18 a^{2} b d^{2}\left(F^{f g x+e g}\right)^{n}(d x+c)}{f^{3} g^{3} n^{3} \ln (F)^{3}} \\
& +\frac{9 a b^{2} d^{2}\left(F^{f g x+e g}\right)^{2 n}(d x+c)}{4 f^{3} g^{3} n^{3} \ln (F)^{3}}+\frac{2 b^{3} d^{2}\left(F^{f g} g x+e g\right)^{3 n}(d x+c)}{9 f^{3} g^{3} n^{3} \ln (F)^{3}}-\frac{9 a^{2} b d\left(F^{f g x+e g}\right)^{n}(d x+c)^{2}}{f^{2} g^{2} n^{2} \ln (F)^{2}}-\frac{9 a b^{2} d\left(F^{f g x+e g}\right)^{2 n}(d x+c)^{2}}{4 f^{2} g^{2} n^{2} \ln (F)^{2}} \\
& -\frac{b^{3} d\left(F^{f g x+e g}\right)^{3 n}(d x+c)^{2}}{3 f^{2} g^{2} n^{2} \ln (F)^{2}}+\frac{3 a^{2} b\left(F^{f g x+e g}\right)^{n}(d x+c)^{3}}{f g n \ln (F)}+\frac{3 a b^{2}\left(F^{f g x+e g}\right)^{2 n}(d x+c)^{3}}{2 f g n \ln (F)}+\frac{b^{3}\left(F^{f g x+e g}\right)^{3 n}(d x+c)^{3}}{3 f g n \ln (F)}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}(d x+c)^{3} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}(d x+c) \mathrm{d} x
$$

Optimal(type 3, 226 leaves, 8 steps):

$$
\begin{aligned}
& \frac{a^{3}(d x+c)^{2}}{2 d}-\frac{3 a^{2} b d\left(F^{f g x+e g}\right)^{n}}{f^{2} g^{2} n^{2} \ln (F)^{2}}-\frac{3 a b^{2} d\left(F^{f g x+e g}\right)^{2 n}}{4 f^{2} g^{2} n^{2} \ln (F)^{2}}-\frac{b^{3} d\left(F^{f g x+e g}\right)^{3 n}}{9 f^{2} g^{2} n^{2} \ln (F)^{2}}+\frac{3 a^{2} b\left(F^{f g} x+e g\right)^{n}(d x+c)}{f g n \ln (F)}+\frac{3 a b^{2}\left(F^{f g} x+e g\right)^{2 n}(d x+c)}{2 f g n \ln (F)} \\
& \quad+\frac{b^{3}\left(F^{f g x+e g}\right)^{3 n}(d x+c)}{3 f g n \ln (F)}
\end{aligned}
$$

Result(type 8, 25 leaves):

$$
\int\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}(d x+c) \mathrm{d} x
$$

[^0]$$
\int \frac{\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}}{(d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 431 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{a^{3}}{2 d(d x+c)^{2}}-\frac{3 a^{2} b\left(F^{f g x+e g)^{n}}\right.}{2 d(d x+c)^{2}}-\frac{3 a b^{2}\left(F^{f g x+e g}\right)^{2 n}}{2 d(d x+c)^{2}}-\frac{b^{3}\left(F^{f g x+e g}\right)^{3 n}}{2 d(d x+c)^{2}}-\frac{3 a^{2} b f\left(F^{f g x+e g)^{n} g n \ln (F)}\right.}{2 d^{2}(d x+c)}-\frac{3 a b^{2} f\left(F^{f g x+e g}\right)^{2 n} g n \ln (F)}{d^{2}(d x+c)} \\
& -\frac{3 b^{3} f\left(F^{f g x+e g)^{3 n} g n \ln (F)}\right.}{2 d^{2}(d x+c)}+\frac{3 a^{2} b f^{2} F^{\left(e-\frac{f c}{d}\right) g n-g n(f x+e)}\left(F^{f g x+e g}\right)^{n} g^{2} n^{2} \operatorname{Ei}\left(\frac{f g n(d x+c) \ln (F)}{d}\right) \ln (F)^{2}}{2 d^{3}} \\
& +\frac{6 a b^{2} f^{2} F^{2\left(e-\frac{f c}{d}\right) g n-2 g n(f x+e)}\left(F^{f g x+e g)^{2 n} g^{2} n^{2} \operatorname{Ei}\left(\frac{2 f g n(d x+c) \ln (F)}{d}\right) \ln (F)^{2}}\right.}{d^{3}} \\
& +\frac{9 b^{3} f^{2} F^{3\left(e-\frac{f c}{d}\right) g n-3 g n(f x+e)}\left(F^{f g x+e g}\right)^{3 n} g^{2} n^{2} \operatorname{Ei}\left(\frac{3 f g n(d x+c) \ln (F)}{d}\right) \ln (F)^{2}}{2 d^{3}}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int \frac{\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}}{(d x+c)^{3}} \mathrm{~d} x
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{2}}{a+b\left(F^{g}(f x+e)\right)^{n}} \mathrm{~d} x
$$

Optimal(type 4, 143 leaves, 5 steps):

$$
\frac{(d x+c)^{3}}{3 a d}-\frac{(d x+c)^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a f g n \ln (F)}-\frac{2 d(d x+c) \operatorname{polylog}\left(2,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a f^{2} g^{2} n^{2} \ln (F)^{2}}+\frac{2 d^{2} \operatorname{polylog}\left(3,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a f^{3} g^{3} n^{3} \ln (F)^{3}}
$$

Result(type 4, 1340 leaves):

$$
\begin{array}{r}
-\frac{d^{2}\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{g^{3} f^{3} \ln (F)^{3} n a}-\frac{d^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) x^{2}}{g f \ln (F) n a}+\frac{d^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) e^{2}}{g f^{3} \ln (F) n a} \\
+\frac{d^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)^{2}}{g^{3} f^{3} \ln (F)^{3} n a}+\frac{2 c d\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right) \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{g^{2} f^{2} \ln (F)^{2} n a} \\
-\frac{2 c d e \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{g f^{2} \ln (F) n a}+\frac{2 c d e \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{g f^{2} \ln (F) n a}+\frac{2 d^{2} e\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right) \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{g^{2} f^{3} \ln (F)^{2} n a}
\end{array}
$$

$$
\begin{aligned}
& -\frac{2 d^{2} e\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right) \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{g^{2} f^{3} \ln (F)^{2} n a}-\frac{2 c d\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right) \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{g^{2} f^{2} \ln (F)^{2} n a} \\
& -\frac{2 c d \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) e}{g f^{2} \ln (F) n a}-\frac{2 c d \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)}{g^{2} f^{2} \ln (F)^{2} n a} \\
& +\frac{2 d^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) e\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)}{g^{2} f^{3} \ln (F)^{2} n a}-\frac{2 c d \ln \left(F^{g(f x+e)}\right) x}{g f \ln (F) a}-\frac{2 d^{2} \ln \left(F^{g(f x+e)}\right)^{3}}{3 g^{3} f^{3} \ln (F)^{3} a}+\frac{2 c d x e}{f a} \\
& -\frac{2 d^{2} e x\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)}{g f^{2} \ln (F) a}-\frac{d^{2} e^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{g f^{3} \ln (F) n a}+\frac{d^{2} e^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{g f^{3} \ln (F) n a}-\frac{2 d^{2} \operatorname{polylog}\left(2,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) x}{g^{2} f^{2} \ln (F)^{2} n^{2} a} \\
& -\frac{2 c d \text { polylog }\left(2,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{g^{2} f^{2} \ln (F)^{2} n^{2} a}+\frac{d^{2}\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{g^{3} f^{3} \ln (F)^{3} n a}+\frac{2 c d x\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)}{g f \ln (F) a} \\
& +\frac{d^{2} x^{3}}{a}+\frac{2 d^{2} \operatorname{polylog}\left(3,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a f^{3} g^{3} n^{3} \ln (F)^{3}}-\frac{d^{2} e^{2} x}{f^{2} a}+\frac{2 c d x^{2}}{a}-\frac{2 c d \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) x}{g f \ln (F) n a}+\frac{c d \ln \left(F^{g}(f x+e)\right)^{2}}{g^{2} f^{2} \ln (F)^{2} a}-\frac{2 d^{2} \ln \left(F^{g(f x+e)}\right) x^{2}}{g f \ln (F) a} \\
& +\frac{2 d^{2} \ln \left(F^{g(f x+e)}\right)^{2} x}{g^{2} f^{2} \ln (F)^{2} a}-\frac{c^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{g f \ln (F) n a}-\frac{d^{2}\left(\ln \left(F^{g(f x+e)}\right)-g(f x+e) \ln (F)\right)^{2} x}{g^{2} f^{2} \ln (F)^{2} a}+\frac{c^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{g f \ln (F) n a}
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{2}}{\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 433 leaves, 24 steps):

$$
\begin{aligned}
& \frac{(d x+c)^{3}}{3 a^{3} d}+\frac{d^{2} x}{a^{3} f^{2} g^{2} n^{2} \ln (F)^{2}}-\frac{d(d x+c)}{a^{2} f^{2}\left(a+b\left(F^{g(f x+e)}\right)^{n}\right) g^{2} n^{2} \ln (F)^{2}}-\frac{3(d x+c)^{2}}{2 a^{3} f g n \ln (F)}+\frac{(d x+c)^{2}}{2 a f\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{2} g n \ln (F)} \\
& +\frac{(d x+c)^{2}}{a^{2} f\left(a+b\left(F^{\left.g(f x+e))^{n}\right) g n \ln (F)}\right.\right.}-\frac{d^{2} \ln \left(a+b\left(F^{\left.g(f x+e))^{n}\right)}\right.\right.}{a^{3} f^{3} g^{3} n^{3} \ln (F)^{3}}+\frac{3 d(d x+c) \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a^{3} f^{2} g^{2} n^{2} \ln (F)^{2}}-\frac{(d x+c)^{2} \ln \left(1+\frac{b\left(F^{g(f x+e))^{n}}\right.}{a}\right)}{a^{3} f g n \ln (F)} \\
& +\frac{3 d^{2} \operatorname{polylog}\left(2,-\frac{b\left(F^{g}(f x+e)\right)^{n}}{a}\right)}{a^{3} f^{3} g^{3} n^{3} \ln (F)^{3}}-\frac{2 d(d x+c) \operatorname{polylog}\left(2,-\frac{b\left(F^{g(f x+e))^{n}}\right.}{a}\right)}{a^{3} f^{2} g^{2} n^{2} \ln (F)^{2}}+\frac{2 d^{2} \operatorname{poly\operatorname {log}(3,-\frac {b(F^{g(fx+e)})^{n}}{a})}}{a^{3} f^{3} g^{3} n^{3} \ln (F)^{3}}
\end{aligned}
$$

Result(type 4, 1456 leaves):

$$
\begin{aligned}
& -\frac{d^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{a^{3} f^{3} g^{3} n^{3} \ln (F)^{3}}+\frac{3 d^{2} \operatorname{poly} \log \left(2,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a^{3} f^{3} g^{3} n^{3} \ln (F)^{3}}+\frac{2 d^{2} \operatorname{polylog}\left(3,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a^{3} f^{3} g^{3} n^{3} \ln (F)^{3}}-\frac{2 c d \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right) x}{\ln (F) a^{3} f g n} \\
& +\frac{2 c d \ln \left(\left(F^{g(f x+e)}\right)^{n}\right) x}{\ln (F) a^{3} f g n}-\frac{2 d^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right) x}{\ln (F)^{2} a^{3} f^{2} g^{2} n}+\frac{2 d^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right) x}{\ln (F)^{2} a^{3} f^{2} g^{2} n} \\
& -\frac{2 d^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) \ln \left(F^{g(f x+e)}\right) x}{\ln (F)^{2} a^{3} f^{2} g^{2} n}-\frac{2 c d \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) \ln \left(F^{g(f x+e)}\right)}{\ln (F)^{2} a^{3} f^{2} g^{2} n}+\frac{2 c d \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right)}{\ln (F)^{2} a^{3} f^{2} g^{2} n} \\
& -\frac{2 c d \ln \left(\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right)}{\ln (F)^{2} a^{3} f^{2} g^{2} n}-\frac{3 d^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right)}{\ln (F)^{3} a^{3} f^{3} g^{3} n^{2}}+\frac{3 d^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) \ln \left(F^{g(f x+e)}\right)}{\ln (F)^{3} a^{3} f^{3} g^{3} n^{2}} \\
& -\frac{3 d^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right) x}{}+\frac{3 d^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right)}{2}-\frac{2 d^{2} \operatorname{polylog}\left(2,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) x}{}-\frac{2 c d \operatorname{polylog}\left(2,-\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right)}{a} \\
& -\frac{3 d^{2} \ln (F)^{2} a^{3} f^{2} g^{2} n^{2}}{\ln }+\frac{a}{\ln (F)^{3} a^{3} f^{3} g^{3} n^{2}}-\frac{a}{\ln (F)^{2} a^{3} f^{2} g^{2} n^{2}}-\frac{a}{\ln (F)^{2} a^{3} f^{2} g^{2} n^{2}} \\
& -\frac{3 c d \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{\ln (F)^{2} a^{3} f^{2} g^{2} n^{2}}+\frac{3 c d \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{\ln (F)^{2} a^{3} f^{2} g^{2} n^{2}}+\frac{d^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right) x^{2}}{\ln (F) a^{3} f g n}+\frac{d^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right)^{2}}{\ln (F)^{3} a^{3} f^{3} g^{3} n} \\
& -\frac{d^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right) x^{2}}{\ln (F) a^{3} f g n}-\frac{d^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right) \ln \left(F^{g(f x+e)}\right)^{2}}{\ln (F)^{3} a^{3} f^{3} g^{3} n}+\frac{d^{2} \ln \left(1+\frac{b\left(F^{g(f x+e)}\right)^{n}}{a}\right) \ln \left(F^{g(f x+e)}\right)^{2}}{\ln (F)^{3} a^{3} f^{3} g^{3} n} \\
& +\frac{3 d^{2} \ln \left(a+b\left(F^{g}(f x+e)\right)^{n}\right) x}{\ln (F)^{2} a^{3} f^{2} g^{2} n^{2}}-\frac{2 d^{2} \ln \left(F^{g(f x+e)}\right)^{3}}{3 \ln (F)^{3} a^{3} f^{3} g^{3}}+\frac{d c \ln \left(F^{g(f x+e)}\right)^{2}}{\ln (F)^{2} a^{3} f^{2} g^{2}}+\frac{d^{2} \ln \left(F^{g(f x+e)}\right)^{2} x}{\ln (F)^{2} a^{3} f^{2} g^{2}}-\frac{3 d^{2} \ln \left(F^{g(f x+e)}\right)^{2}}{2 \ln (F)^{3} a^{3} f^{3} g^{3} n}+\frac{d^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{\ln (F)^{3} a^{3} f^{3} g^{3} n^{3}} \\
& +\frac{c^{2} \ln \left(\left(F^{g(f x+e)}\right)^{n}\right)}{\ln (F) a^{3} f g n}-\frac{c^{2} \ln \left(a+b\left(F^{g(f x+e)}\right)^{n}\right)}{\ln (F) a^{3} f g n}+\frac{1}{2 \ln (F)^{2} a^{2} f^{2} g^{2} n^{2}\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{2}}\left(2 \ln (F) b d^{2} f g n x^{2}\left(F^{g(f x+e)}\right)^{n}\right. \\
& +3 \ln (F) a d^{2} f g n x^{2}+4 \ln (F) b c d f g n x\left(F^{g(f x+e)}\right)^{n}+6 \ln (F) a c d f g n x+2 \ln (F) b c^{2} f g n\left(F^{g(f x+e)}\right)^{n}+3 \ln (F) a c^{2} f g n-2 b d^{2} x\left(F^{g}(f x+e)\right)^{n} \\
& \left.-2 a d^{2} x-2 b c d\left(F^{g(f x+e)}\right)^{n}-2 a c d\right)
\end{aligned}
$$

Problem 23: Unable to integrate problem.

$$
\int\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}(d x+c)^{m} \mathrm{~d} x
$$

Optimal(type 4, 340 leaves, 8 steps):

$$
\frac{a^{3}(d x+c)^{1+m}}{d(1+m)}+\frac{3^{-m-1} b^{3} F^{3\left(e-\frac{f c}{d}\right) g n-3 g n(f x+e)}\left(F^{f g x+e g)^{3 n}(d x+c)^{m} \Gamma\left(1+m,-\frac{3 f g n(d x+c) \ln (F)}{d}\right)}\right.}{f g n \ln (F)\left(-\frac{f g n(d x+c) \ln (F)}{d}\right)^{m}}
$$

$$
\begin{aligned}
& +\frac{32^{-m-1} a b^{2} F^{2\left(e-\frac{f c}{d}\right) g n-2 g n(f x+e)}\left(F^{f g x+e g}\right)^{2 n}(d x+c)^{m} \Gamma\left(1+m,-\frac{2 f g n(d x+c) \ln (F)}{d}\right)}{f g n \ln (F)\left(-\frac{f g n(d x+c) \ln (F)}{d}\right)^{m}} \\
& +\frac{3 a^{2} b F^{\left(e-\frac{f c}{d}\right) g n-g n(f x+e)}\left(F^{f g x+e g)^{n}(d x+c)^{m} \Gamma\left(1+m,-\frac{f g n(d x+c) \ln (F)}{d}\right)}\right.}{f g n \ln (F)\left(-\frac{f g n(d x+c) \ln (F)}{d}\right)^{m}}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int\left(a+b\left(F^{g(f x+e)}\right)^{n}\right)^{3}(d x+c)^{m} \mathrm{~d} x
$$

Test results for the 212 problems in "2.3 Exponential functions.txt"
Problem 7: Unable to integrate problem.

$$
\int\left(a+b\left(F^{e(d x+c)}\right)^{n}\right)^{p}\left(G^{h(g x+f)}\right)^{\frac{d e n \ln (F)}{g h \ln (G)}} \mathrm{d} x
$$

Optimal(type 3, 80 leaves, 3 steps):

$$
\frac{\left(a+b\left(F^{e(d x+c)}\right)^{n}\right)^{1+p}\left(G^{h(g x+f)}\right)^{\frac{d e n \ln (F)}{g h \ln (G)}}}{b d e\left(F^{e(d x+c)}\right)^{n} n(1+p) \ln (F)}
$$

Result(type 8, 46 leaves):

$$
\int\left(a+b\left(F^{e(d x+c)}\right)^{n}\right)^{p}\left(G^{h(g x+f)}\right)^{\frac{d e n \ln (F)}{g h \ln (G)}} \mathrm{d} x
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{f^{3 b x+a}}{c+d f^{2 b x+e}} \mathrm{~d} x
$$

Optimal(type 3, 61 leaves, 3 steps):

$$
\frac{f^{b x+a-e}}{b d \ln (f)}-\frac{f^{a-\frac{3 e}{2}} \arctan \left(\frac{f^{b x+\frac{e}{2}} \sqrt{d}}{\sqrt{c}}\right) \sqrt{c}}{b d^{3 / 2} \ln (f)}
$$

Result(type 3, 170 leaves):

$$
\frac{f^{b x+\frac{a}{3}}}{\left(f^{\frac{e}{2}}\right)^{2}\left(f^{-\frac{a}{3}}\right)^{2} d \ln (f) b}+\frac{\sqrt{-d c} \ln \left(f^{b x+\frac{a}{3}}-\frac{\sqrt{-d c}}{d f^{-\frac{a}{3}} f^{\frac{e}{2}}}\right)}{2 d^{2} b \ln (f)\left(f^{-\frac{a}{3}}\right)^{3}\left(f^{\frac{e}{2}}\right)^{3}}-\frac{\sqrt{-d c} \ln \left(f^{b x+\frac{a}{3}}+\frac{\sqrt{-d c}}{d f^{-\frac{a}{3}} f^{\frac{e}{2}}}\right)}{2 d^{2} b \ln (f)\left(f^{-\frac{a}{3}}\right)^{3}\left(f^{\frac{e}{2}}\right)^{3}}
$$

Problem 15: Unable to integrate problem.

$$
\int \frac{f^{x} x^{2}}{a+b f^{2 x}} \mathrm{~d} x
$$

Optimal(type 4, 136 leaves, 9 steps):

$$
\frac{x^{2} \arctan \left(\frac{f^{x} \sqrt{b}}{\sqrt{a}}\right)}{\ln (f) \sqrt{a} \sqrt{b}}-\frac{\mathrm{I} x \operatorname{poly} \log \left(2, \frac{-\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{\ln (f)^{2} \sqrt{a} \sqrt{b}}+\frac{\mathrm{I} x \operatorname{polylog}\left(2, \frac{\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{\ln (f)^{2} \sqrt{a} \sqrt{b}}+\frac{\mathrm{I} \operatorname{poly} \log \left(3, \frac{-\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{\ln (f)^{3} \sqrt{a} \sqrt{b}}-\frac{\mathrm{I} \operatorname{polylog}\left(3, \frac{\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{\ln (f)^{3} \sqrt{a} \sqrt{b}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{f^{x} x^{2}}{a+b f^{2 x}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{f^{x} x^{2}}{\left(a+b f^{2 x}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 241 leaves, 16 steps):

$$
\frac{f^{x} x^{2}}{2 a\left(a+b f^{2 x}\right) \ln (f)}-\frac{x \arctan \left(\frac{f^{x} \sqrt{b}}{\sqrt{a}}\right)}{a^{3 / 2} \ln (f)^{2} \sqrt{b}}+\frac{x^{2} \arctan \left(\frac{f^{x} \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} \ln (f) \sqrt{b}}+\frac{\mathrm{Ipolylog}\left(2, \frac{-\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} \ln (f)^{3} \sqrt{b}}-\frac{\mathrm{I} x \operatorname{poly} \log \left(2, \frac{-\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} \ln (f)^{2} \sqrt{b}}-\frac{\mathrm{Ipolylog}\left(2, \frac{\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} \ln (f)^{3} \sqrt{b}}
$$

$$
+\frac{\mathrm{I} x \text { polylog }\left(2, \frac{\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} \ln (f)^{2} \sqrt{b}}+\frac{\mathrm{I} \text { polylog }\left(3, \frac{-\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} \ln (f)^{3} \sqrt{b}}-\frac{\mathrm{I} \text { polylog }\left(3, \frac{\mathrm{I} f^{x} \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} \ln (f)^{3} \sqrt{b}}
$$

Result(type 8, 67 leaves):

$$
\frac{\mathrm{e}^{x \ln (f)} x^{2}}{2 \ln (f) a\left(a+b\left(\mathrm{e}^{x \ln (f)}\right)^{2}\right)}+\int \frac{\mathrm{e}^{x \ln (f)} x(x \ln (f)-2)}{2 \ln (f) a\left(a+b\left(\mathrm{e}^{x \ln (f)}\right)^{2}\right)} \mathrm{d} x
$$

Problem 18: Unable to integrate problem.

$$
\int \frac{x^{2}}{\frac{b}{f^{x}}+a f^{x}} \mathrm{~d} x
$$

Optimal(type 4, 136 leaves, 9 steps):

$$
\frac{x^{2} \arctan \left(\frac{f^{x} \sqrt{a}}{\sqrt{b}}\right)}{\ln (f) \sqrt{a} \sqrt{b}}-\frac{\mathrm{I} x \operatorname{polylog}\left(2, \frac{-\mathrm{I} f^{x} \sqrt{a}}{\sqrt{b}}\right)}{\ln (f)^{2} \sqrt{a} \sqrt{b}}+\frac{\mathrm{I} x \operatorname{polylog}\left(2, \frac{\mathrm{I} f^{\alpha} \sqrt{a}}{\sqrt{b}}\right)}{\ln (f)^{2} \sqrt{a} \sqrt{b}}+\frac{\mathrm{I} \operatorname{polylog}\left(3, \frac{-\mathrm{I} f^{\alpha} \sqrt{a}}{\sqrt{b}}\right)}{\ln (f)^{3} \sqrt{a} \sqrt{b}}-\frac{\mathrm{I} \text { polylog }\left(3, \frac{\mathrm{I} f^{x} \sqrt{a}}{\sqrt{b}}\right)}{\ln (f)^{3} \sqrt{a} \sqrt{b}}
$$

Result(type 8, 21 leaves):

$$
\int \frac{x^{2}}{\frac{b}{f^{x}}+a f^{x}} \mathrm{~d} x
$$

Problem 20: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(\frac{b}{f^{x}}+a f^{x}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 242 leaves, 43 steps):
$-\frac{\arctan \left(\frac{f^{x} \sqrt{a}}{\sqrt{b}}\right)}{4 a^{3 / 2} b^{3 / 2} \ln (f)^{3}}+\frac{f^{x} x}{4 a b\left(b+a f^{2 x}\right) \ln (f)^{2}}-\frac{f^{x} x^{2}}{4 a\left(b+a f^{2 x}\right)^{2} \ln (f)}+\frac{f^{x} x^{2}}{8 a b\left(b+a f^{2 x}\right) \ln (f)}+\frac{x^{2} \arctan \left(\frac{f^{x} \sqrt{a}}{\sqrt{b}}\right)}{8 a^{3 / 2} b^{3 / 2} \ln (f)}-\frac{\mathrm{I} x \operatorname{polylog}\left(2, \frac{-\mathrm{I} f^{x} \sqrt{a}}{\sqrt{b}}\right)}{8 a^{3 / 2} b^{3 / 2} \ln (f)^{2}}$

$$
+\frac{\mathrm{I} x \text { polylog }\left(2, \frac{\mathrm{I} f^{x} \sqrt{a}}{\sqrt{b}}\right)}{8 a^{3 / 2} b^{3 / 2} \ln (f)^{2}}+\frac{\mathrm{I} \text { polylog }\left(3, \frac{-\mathrm{I} f^{x} \sqrt{a}}{\sqrt{b}}\right)}{8 a^{3 / 2} b^{3 / 2} \ln (f)^{3}}-\frac{\mathrm{I} \text { polylog }\left(3, \frac{\mathrm{I} f^{x} \sqrt{a}}{\sqrt{b}}\right)}{8 a^{3 / 2} b^{3 / 2} \ln (f)^{3}}
$$

Result(type 8, 106 leaves):

$$
\frac{\mathrm{e}^{x \ln (f)} x\left(\ln (f) a x\left(\mathrm{e}^{x \ln (f)}\right)^{2}-\ln (f) b x+2\left(\mathrm{e}^{x \ln (f)}\right)^{2} a+2 b\right)}{8 b \ln (f)^{2} a\left(\left(\mathrm{e}^{x \ln (f)}\right)^{2} a+b\right)^{2}}+\int \frac{\mathrm{e}^{x \ln (f)}\left(\ln (f)^{2} x^{2}-2\right)}{8 b \ln (f)^{2} a\left(\left(\mathrm{e}^{x \ln (f)}\right)^{2} a+b\right)} \mathrm{d} x
$$

Problem 21: Unable to integrate problem.

$$
\int f^{x^{2}+b x+a} g^{f x^{2}+e x+d} \mathrm{~d} x
$$

Optimal(type 4, 84 leaves, 3 steps):
$\frac{f^{a} g^{d} \operatorname{erfi}\left(\frac{b \ln (f)+e \ln (g)+2 x(c \ln (f)+f \ln (g))}{2 \sqrt{c \ln (f)+f \ln (g)}}\right) \sqrt{\pi}}{2 \mathrm{e}^{\frac{(b \ln (f)+e \ln (g))^{2}}{4(c \ln (f)+f \ln (g))}} \sqrt{c \ln (f)+f \ln (g)}}$

Result(type 8, 27 leaves):

$$
\int f^{c x^{2}+b x+a} g^{f x^{2}+e x+d} \mathrm{~d} x
$$

Problem 22: Unable to integrate problem.

$$
\int F^{e(d x+c)}\left(a+b G^{h(g x+f)}\right)^{n} \mathrm{~d} x
$$

Optimal(type 5, 108 leaves, 2 steps):

$$
\frac{F^{e(d x+c)}\left(a+b G^{h(g x+f)}\right)^{n} \text { hypergeom }\left(\left[-n, \frac{d e \ln (F)}{g h \ln (G)}\right],\left[1+\frac{d e \ln (F)}{g h \ln (G)}\right],-\frac{b G^{h(g x+f)}}{a}\right)}{d e\left(1+\frac{b G^{h(g x+f)}}{a}\right)^{n} \ln (F)}
$$

Result(type 8, 27 leaves):

$$
\int F^{e(d x+c)}\left(a+b G^{h(g x+f)}\right)^{n} \mathrm{~d} x
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{f^{b x^{2}+a}}{x^{9}} d x
$$

Optimal(type 4, 18 leaves, 1 step):

$$
-\frac{f^{a} \mathrm{Ei}_{5}\left(-b x^{2} \ln (f)\right)}{2 x^{8}}
$$

Result(type 4, 100 leaves):

$$
-\frac{f^{a} f^{b x^{2}}}{8 x^{8}}-\frac{f^{a} \ln (f) b f^{b x^{2}}}{24 x^{6}}-\frac{f^{a} \ln (f)^{2} b^{2} f^{b x^{2}}}{48 x^{4}}-\frac{f^{a} \ln (f)^{3} b^{3} f^{b x^{2}}}{48 x^{2}}-\frac{f^{a} \ln (f)^{4} b^{4} \mathrm{Ei}_{1}\left(-b x^{2} \ln (f)\right)}{48}
$$

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \frac{f^{b x^{2}+a}}{x^{11}} \mathrm{~d} x
$$

Optimal(type 4, 18 leaves, 1 step):

$$
-\frac{f^{a} \mathrm{Ei}_{6}\left(-b x^{2} \ln (f)\right)}{2 x^{10}}
$$

Result(type 4, 122 leaves):

$$
-\frac{f^{a} f^{b x^{2}}}{10 x^{10}}-\frac{f^{a} \ln (f) b f^{b x^{2}}}{40 x^{8}}-\frac{f^{a} \ln (f)^{2} b^{2} f^{b x^{2}}}{120 x^{6}}-\frac{f^{a} \ln (f)^{3} b^{3} f^{b x^{2}}}{240 x^{4}}-\frac{f^{a} \ln (f)^{4} b^{4} f^{b x^{2}}}{240 x^{2}}-\frac{f^{a} \ln (f)^{5} b^{5} \mathrm{Ei}_{1}\left(-b x^{2} \ln (f)\right)}{240}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{f^{b x^{3}+a}}{x} \mathrm{~d} x
$$

Optimal(type 4, 13 leaves, 1 step):

$$
\frac{f^{a} \operatorname{Ei}\left(b x^{3} \ln (f)\right)}{3}
$$

Result(type 4, 40 leaves):

$$
\frac{f^{a}\left(3 \ln (x)+\ln (-b)+\ln (\ln (f))-\ln \left(-b x^{3} \ln (f)\right)-\mathrm{Ei}_{1}\left(-b x^{3} \ln (f)\right)\right)}{3}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{f^{b x^{3}+a}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 28 leaves, 1 step):

$$
-\frac{f^{a} \Gamma\left(-\frac{2}{3},-b x^{3} \ln (f)\right)\left(-b x^{3} \ln (f)\right)^{2 / 3}}{3 x^{2}}
$$

Result(type 4, 101 leaves):

$$
-\frac{f^{a} b \ln (f)^{2 / 3}\left(\frac{x \ln (f)^{1 / 3} b \pi \sqrt{3}}{(-b)^{2 / 3} \Gamma\left(\frac{2}{3}\right)\left(-b x^{3} \ln (f)\right)^{1 / 3}}-\frac{3 e^{b x^{3} \ln (f)}}{2 x^{2}(-b)^{2 / 3} \ln (f)^{2 / 3}}-\frac{3 x \ln (f)^{1 / 3} b \Gamma\left(\frac{1}{3},-b x^{3} \ln (f)\right.}{2(-b)^{2 / 3}\left(-b x^{3} \ln (f)\right)^{1 / 3}}\right)}{3(-b)^{1 / 3}}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int f^{a+\frac{b}{x}} x^{3} \mathrm{~d} x
$$

Optimal(type 4, 17 leaves, 1 step):

$$
f^{a} x^{4} \mathrm{Ei}_{5}\left(-\frac{b \ln (f)}{x}\right)
$$

Result(type 4, 102 leaves):

$$
\frac{f^{\frac{a x+b}{x}} x^{4}}{4}+\frac{\ln (f) b f^{\frac{a x+b}{x}} x^{3}}{12}+\frac{\ln (f)^{2} b^{2} f^{\frac{a x+b}{x}} x^{2}}{24}+\frac{\ln (f)^{3} b^{3} f^{\frac{a x+b}{x}} x}{24}+\frac{\ln (f)^{4} b^{4} f^{a} \operatorname{Ei}_{1}\left(-\frac{b \ln (f)}{x}\right)}{24}
$$

Problem 45: Result more than twice size of optimal antiderivative.

$$
\int f^{a+\frac{b}{x^{3}}} x^{14} \mathrm{~d} x
$$

Optimal(type 4, 18 leaves, 1 step):

$$
\frac{f^{a} x^{15} \mathrm{Ei}_{6}\left(-\frac{b \ln (f)}{x^{3}}\right)}{3}
$$

Result(type 4, 248 leaves):

$$
\begin{aligned}
& \frac{1}{3}\left(f ^ { a } b ^ { 5 } \operatorname { l n } (f) ^ { 5 } \left(\frac{x^{15}}{5 b^{5} \ln (f)^{5}}+\frac{x^{12}}{4 b^{4} \ln (f)^{4}}+\frac{x^{9}}{6 b^{3} \ln (f)^{3}}+\frac{x^{6}}{12 b^{2} \ln (f)^{2}}+\frac{x^{3}}{24 b \ln (f)}+\frac{137}{7200}+\frac{\ln (x)}{40}-\frac{\ln (-b)}{120}-\frac{\ln (\ln (f))}{120}\right.\right. \\
& \quad-\frac{x^{15}\left(\frac{137 b^{5} \ln (f)^{5}}{x^{15}}+\frac{300 b^{4} \ln (f)^{4}}{x^{12}}+\frac{600 b^{3} \ln (f)^{3}}{x^{9}}+\frac{1200 b^{2} \ln (f)^{2}}{x^{6}}+\frac{1800 b \ln (f)}{x^{3}}+1440\right)}{7200 b^{5} \ln (f)^{5}} \\
& \left.\left.\quad+\frac{x^{15}\left(\frac{6 b^{4} \ln (f)^{4}}{x^{12}}+\frac{6 b^{3} \ln (f)^{3}}{x^{9}}+\frac{12 b^{2} \ln (f)^{2}}{x^{6}}+\frac{36 b \ln (f)}{x^{3}}+144\right) \mathrm{e}^{\frac{b \ln (f)}{x^{3}}}}{720 b^{5} \ln (f)^{5}}+\frac{\ln \left(-\frac{b \ln (f)}{x^{3}}\right)}{120}+\frac{\operatorname{Ei}_{1}\left(-\frac{b \ln (f)}{x^{3}}\right)}{120}\right)\right)
\end{aligned}
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int^{a+\frac{b}{x^{3}}} x^{11} \mathrm{~d} x
$$

Optimal(type 4, 18 leaves, 1 step):

$$
\frac{f^{a} x^{12} \mathrm{Ei}_{5}\left(-\frac{b \ln (f)}{x^{3}}\right)}{3}
$$

Result(type 4, 212 leaves):
$-\frac{1}{3}\left(f^{a} b^{4} \ln (f)^{4}\left(-\frac{x^{12}}{4 b^{4} \ln (f)^{4}}-\frac{x^{9}}{3 b^{3} \ln (f)^{3}}-\frac{x^{6}}{4 b^{2} \ln (f)^{2}}-\frac{x^{3}}{6 b \ln (f)}-\frac{25}{288}-\frac{\ln (x)}{8}+\frac{\ln (-b)}{24}+\frac{\ln (\ln (f))}{24}\right.\right.$

$$
\begin{aligned}
& +\frac{x^{12}\left(\frac{125 b^{4} \ln (f)^{4}}{x^{12}}+\frac{240 b^{3} \ln (f)^{3}}{x^{9}}+\frac{360 b^{2} \ln (f)^{2}}{x^{6}}+\frac{480 b \ln (f)}{x^{3}}+360\right)}{1440 b^{4} \ln (f)^{4}}-\frac{x^{12}\left(\frac{5 b^{3} \ln (f)^{3}}{x^{9}}+\frac{5 b^{2} \ln (f)^{2}}{x^{6}}+\frac{10 b \ln (f)}{x^{3}}+30\right) \mathrm{e}^{\frac{b \ln (f)}{x^{3}}}}{120 b^{4} \ln (f)^{4}} \\
& \left.-\frac{\ln \left(-\frac{b \ln (f)}{x^{3}}\right)}{24}-\frac{\mathrm{Ei}_{1}\left(-\frac{b \ln (f)}{x^{3}}\right)}{24}\right)
\end{aligned}
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int^{a+\frac{b}{x^{3}}} x^{4} \mathrm{~d} x
$$

Optimal(type 4, 28 leaves, 1 step):

$$
\frac{f^{a} x^{5} \Gamma\left(-\frac{5}{3},-\frac{b \ln (f)}{x^{3}}\right)\left(-\frac{b \ln (f)}{x^{3}}\right)^{5 / 3}}{3}
$$

Result(type 4, 119 leaves):

$$
-\frac{f^{a}(-b)^{5 / 3} \ln (f)^{5 / 3}\left(\frac{3 \ln (f)^{1 / 3} b^{2} \pi \sqrt{3}}{5 x(-b)^{5 / 3} \Gamma\left(\frac{2}{3}\right)\left(-\frac{b \ln (f)}{x^{3}}\right)^{1 / 3}}-\frac{3 x^{5}\left(\frac{3 b \ln (f)}{2 x^{3}}+1\right)^{\frac{b \ln (f)}{x^{3}}}}{5(-b)^{5 / 3} \ln (f)^{5 / 3}}-\frac{9 \ln (f)^{1 / 3} b^{2} \Gamma\left(\frac{1}{3},-\frac{b \ln (f)}{x^{3}}\right)}{10 x(-b)^{5 / 3}\left(-\frac{b \ln (f)}{x^{3}}\right)^{1 / 3}}\right)}{3}
$$

Problem 55: Unable to integrate problem.

$$
\int \mathrm{e}^{b^{3} x^{3}+3 a b^{2} x^{2}+3 a^{2} b x+a^{3}} x^{4} \mathrm{~d} x
$$

Optimal(type 4, 158 leaves, 8 steps):

$$
\begin{aligned}
& \frac{2 a^{2} \mathrm{e}^{(b x+a)^{3}}}{b^{5}}-\frac{a^{4}(b x+a) \Gamma\left(\frac{1}{3},-(b x+a)^{3}\right)}{3 b^{5}\left(-(b x+a)^{3}\right)^{1 / 3}}+\frac{4 a^{3}(b x+a)^{2} \Gamma\left(\frac{2}{3},-(b x+a)^{3}\right)}{3 b^{5}\left(-(b x+a)^{3}\right)^{2 / 3}}+\frac{4 a(b x+a)^{4} \Gamma\left(\frac{4}{3},-(b x+a)^{3}\right)}{3 b^{5}\left(-(b x+a)^{3}\right)^{4 / 3}} \\
& \quad-\frac{(b x+a)^{5} \Gamma\left(\frac{5}{3},-(b x+a)^{3}\right)}{3 b^{5}\left(-(b x+a)^{3}\right)^{5 / 3}}
\end{aligned}
$$

Result(type 8, 34 leaves):

$$
\int \mathrm{e}^{b^{3} x^{3}+3 a b^{2} x^{2}+3 a^{2} b x+a^{3}} x^{4} \mathrm{~d} x
$$

Problem 63: Unable to integrate problem.

$$
\int \frac{c}{f^{(b x+a)^{3}}} x^{3} \mathrm{~d} x
$$

Optimal(type 4, 168 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{a f^{(b x+a)^{3}}(b x+a)^{3}}{b^{4}}+\frac{a c \operatorname{Ei}\left(\frac{c \ln (f)}{(b x+a)^{3}}\right) \ln (f)}{b^{4}}-\frac{a^{3}(b x+a) \Gamma\left(-\frac{1}{3},-\frac{c \ln (f)}{(b x+a)^{3}}\right)\left(-\frac{c \ln (f)}{(b x+a)^{3}}\right)^{1 / 3}}{3 b^{4}} \\
& +\frac{a^{2}(b x+a)^{2} \Gamma\left(-\frac{2}{3},-\frac{c \ln (f)}{(b x+a)^{3}}\right)\left(-\frac{c \ln (f)}{(b x+a)^{3}}\right)^{2 / 3}}{b^{4}}+\frac{(b x+a)^{4} \Gamma\left(-\frac{4}{3},-\frac{c \ln (f)}{(b x+a)^{3}}\right)\left(-\frac{c \ln (f)}{(b x+a)^{3}}\right)^{4 / 3}}{3 b^{4}}
\end{aligned}
$$

Result(type 8, 17 leaves):

$$
\int f^{\frac{c}{(b x+a)^{3}}} x^{3} \mathrm{~d} x
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int f^{c^{(b x+a)}} x^{m} \mathrm{~d} x
$$

Optimal(type 4, 41 leaves, 1 step):

$$
\frac{f^{a c} x^{m} \Gamma(1+m,-b c x \ln (f))}{b c \ln (f)(-b c x \ln (f))^{m}}
$$

Result(type 4, 116 leaves):
$-\frac{1}{b c}\left(f^{a c}(-b c)^{-m} \ln (f)^{-m-1}\left(x^{m}(-b c)^{m} \ln (f)^{m} m \Gamma(m)(-b c x \ln (f))^{-m}-x^{m}(-b c)^{m} \ln (f)^{m} \mathrm{e}^{b c x \ln (f)}-x^{m}(-b c)^{m} \ln (f)^{m} m(-b c x \ln (f))^{-m} \Gamma(m\right.\right.$,
$\quad-b c x \ln (f))))$

Problem 68: Unable to integrate problem.

$$
\int f^{c(b x+a)^{n}} x^{3} \mathrm{~d} x
$$

Optimal(type 4, 213 leaves, 6 steps):
$-\frac{(b x+a)^{4} \Gamma\left(\frac{4}{n},-c(b x+a)^{n} \ln (f)\right)}{b^{4} n\left(-c(b x+a)^{n} \ln (f)\right)^{\frac{4}{n}}}+\frac{3 a(b x+a)^{3} \Gamma\left(\frac{3}{n},-c(b x+a)^{n} \ln (f)\right)}{b^{4} n\left(-c(b x+a)^{n} \ln (f)\right)^{\frac{3}{n}}}-\frac{3 a^{2}(b x+a)^{2} \Gamma\left(\frac{2}{n},-c(b x+a)^{n} \ln (f)\right)}{b^{4} n\left(-c(b x+a)^{n} \ln (f)\right)^{\frac{2}{n}}}$
$+\frac{a^{3}(b x+a) \Gamma\left(\frac{1}{n},-c(b x+a)^{n} \ln (f)\right)}{b^{4} n\left(-c(b x+a)^{n} \ln (f)\right)^{\frac{1}{n}}}$
Result(type 8, 17 leaves):

$$
\int f^{c^{(b x+a)^{n}}} x^{3} \mathrm{~d} x
$$

Problem 69: Unable to integrate problem.

$$
\int f^{c}(b x+a)^{n} \mathrm{~d} x
$$

Optimal(type 4, 47 leaves, 1 step):

$$
-\frac{(b x+a) \Gamma\left(\frac{1}{n},-c(b x+a)^{n} \ln (f)\right)}{b n\left(-c(b x+a)^{n} \ln (f)\right)^{\frac{1}{n}}}
$$

$$
\int f^{\mathcal{c}(b x+a)^{n}} \mathrm{~d} x
$$

Problem 73: Result more than twice size of optimal antiderivative.

$$
\int F^{a+b(d x+c)^{2}}(d x+c)^{12} \mathrm{~d} x
$$

Optimal(type 4, 578 leaves, 1 step):

$$
-\frac{1}{2 d\left(-b(d x+c)^{2} \ln (F)\right)^{13 / 2}}\left(F ^ { a } (d x + c) ^ { 1 3 } \left(\frac{524288 \Gamma\left(\frac{51}{2},-b(d x+c)^{2} \ln (F)\right)}{5621533568633696205238621875}-\frac{524288\left(-b(d x+c)^{2} \ln (F)\right)^{49 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{5621533568633696205238621875}\right.\right.
$$

$$
-\frac{262144\left(-b(d x+c)^{2} \ln (F)\right)^{47 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{114725174870075432759971875}-\frac{131072\left(-b(d x+c)^{2} \ln (F)\right)^{45 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{2440961167448413462978125}
$$

$$
-\frac{65536\left(-b(d x+c)^{2} \ln (F)\right)^{43 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{54243581498853632510625}-\frac{32768\left(-b(d x+c)^{2} \ln (F)\right)^{41 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{1261478639508224011875}
$$

$$
-\frac{16384\left(-b(d x+c)^{2} \ln (F)\right)^{39 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{30767771695322536875}-\frac{8192\left(-b(d x+c)^{2} \ln (F)\right)^{37 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{788917222956988125}-\frac{4096\left(-b(d x+c)^{2} \ln (F)\right)^{35 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{21322087106945625}
$$

$-\frac{2048\left(-b(d x+c)^{2} \ln (F)\right)^{33 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{609202488769875}-\frac{1024\left(-b(d x+c)^{2} \ln (F)\right)^{31 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{18460681477875}-\frac{512\left(-b(d x+c)^{2} \ln (F)\right)^{29 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{595505854125}$

$$
\begin{aligned}
& -\frac{256\left(-b(d x+c)^{2} \ln (F)\right)^{27 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{20534684625}-\frac{128\left(-b(d x+c)^{2} \ln (F)\right)^{25 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{760543875}-\frac{64\left(-b(d x+c)^{2} \ln (F)\right)^{23 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{30421755} \\
& -\frac{32\left(-b(d x+c)^{2} \ln (F)\right)^{21 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{1322685}-\frac{16\left(-b(d x+c)^{2} \ln (F)\right)^{19 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{62985}-\frac{8\left(-b(d x+c)^{2} \ln (F)\right)^{17 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{3315} \\
& \left.\left.-\frac{4\left(-b(d x+c)^{2} \ln (F)\right)^{15 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{195}-\frac{2\left(-b(d x+c)^{2} \ln (F)\right)^{13 / 2} \mathrm{e}^{b(d x+c)^{2} \ln (F)}}{13}\right)\right)
\end{aligned}
$$

Result(type 4, 1685 leaves):

$$
\begin{aligned}
& -\frac{11 d^{8} x^{9} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 \ln (F)^{2} b^{2}}-\frac{693 d^{4} x^{5} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{16 \ln (F)^{4} b^{4}}+\frac{3465 d^{2} x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{32 \ln (F)^{5} b^{5}}+\frac{99 d^{6} x^{7} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{3} b^{3}} \\
& +\frac{d^{10} x^{11} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b}-\frac{10395 c F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{64 d \ln (F)^{6} b^{6}}-\frac{693 c^{5} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{16 d \ln (F)^{4} b^{4}}+\frac{c^{11} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d \ln (F) b} \\
& -\frac{11 c^{9} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 d \ln (F)^{2} b^{2}}+\frac{99 c^{7} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 d \ln (F)^{3} b^{3}}+\frac{3465 c^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{32 d \ln (F)^{5} b^{5}}+\frac{693 c^{6} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{3} b^{3}} \\
& -\frac{3465 c^{4} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{16 \ln (F)^{4} b^{4}}+\frac{11 c^{10} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b}-\frac{99 c^{8} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 \ln (F)^{2} b^{2}}+\frac{10395 c^{2} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{32 \ln (F)^{5} b^{5}} \\
& -\frac{10395 x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{64 \ln (F)^{6} b^{6}}+\frac{231 d^{5} c^{5} x^{6} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F) b}+\frac{231 d^{4} c^{6} x^{5} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F) b}+\frac{165 d^{3} c^{7} x^{4} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F) b} \\
& +\frac{165 d^{2} c^{8} x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b}+\frac{55 d c^{9} x^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b}-\frac{99 d c^{7} x^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{2} b^{2}}+\frac{11 d^{9} c x^{10} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b} \\
& -\frac{99 d^{7} c x^{8} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 \ln (F)^{2} b^{2}}-\frac{3465 d^{3} c x^{4} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{16 \ln (F)^{4} b^{4}}+\frac{10395 d c x^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{32 \ln (F)^{5} b^{5}}+\frac{693 d^{5} c x^{6} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{3} b^{3}} \\
& +\frac{55 d^{8} c^{2} x^{9} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b}+\frac{2079 d^{4} c^{2} x^{5} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{3} b^{3}}-\frac{3465 d^{2} c^{2} x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{4} b^{4}} \\
& -\frac{99 d^{6} c^{2} x^{7} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{2} b^{2}}+\frac{165 d^{7} c^{3} x^{8} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b}+\frac{3465 d^{3} c^{3} x^{4} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{3} b^{3}} \\
& -\frac{3465 d c^{3} x^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{4} b^{4}}-\frac{231 d^{5} c^{3} x^{6} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{2} b^{2}}-\frac{231 d^{2} c^{6} x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{2} b^{2}} \\
& -\frac{693 d^{4} c^{4} x^{5} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F)^{2} b^{2}}+\frac{3465 d^{2} c^{4} x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{8 \ln (F)^{3} b^{3}}+\frac{165 d^{6} c^{4} x^{7} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F) b} \\
& -\frac{693 d^{3} c^{5} x^{4} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F)^{2} b^{2}}+\frac{2079 d c^{5} x^{2} F^{b} d^{2} x^{2}+2 b c d x+b c^{2}+a}{8 \ln (F)^{3} b^{3}} \\
& 10395 \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right) \\
& 128 d \ln (F)^{6} b^{6} \sqrt{-b \ln (F)}
\end{aligned}
$$

Problem 75: Result more than twice size of optimal antiderivative.

$$
\int F^{a+b(d x+c)^{3}}(d x+c)^{17} \mathrm{~d} x
$$

Optimal(type 3, 103 leaves, 1 step):

$$
-\frac{F^{a+b(d x+c)^{3}}\left(120-120 b(d x+c)^{3} \ln (F)+60 b^{2}(d x+c)^{6} \ln (F)^{2}-20 b^{3}(d x+c)^{9} \ln (F)^{3}+5 b^{4}(d x+c)^{12} \ln (F)^{4}-b^{5}(d x+c)^{15} \ln (F)^{5}\right)}{3 b^{6} d \ln (F)^{6}}
$$

Result(type 3, 856 leaves):
$\frac{1}{3 \ln (F)^{6} b^{6} d}\left(\left(-120+120 \ln (F) b c^{3}-5 \ln (F)^{4} b^{4} c^{12}+\ln (F)^{5} b^{5} c^{15}+20 \ln (F)^{3} b^{3} c^{9}-60 \ln (F)^{2} b^{2} c^{6}+120 d^{3} x^{3} b \ln (F)-60 c d^{11} x^{11} \ln (F)^{4} b^{4}\right.\right.$

$$
+3003 \ln (F)^{5} b^{5} c^{10} d^{5} x^{5}-330 c^{2} d^{10} x^{10} \ln (F)^{4} b^{4}+1365 \ln (F)^{5} b^{5} c^{11} d^{4} x^{4}-1100 \ln (F)^{4} b^{4} c^{3} d^{9} x^{9}+455 \ln (F)^{5} b^{5} c^{12} d^{3} x^{3}-2475 \ln (F)^{4} b^{4} c^{4} d^{8} x^{8}
$$

$$
+105 \ln (F)^{5} b^{5} c^{13} d^{2} x^{2}-3960 \ln (F)^{4} b^{4} c^{5} d^{7} x^{7}+15 \ln (F)^{5} b^{5} c^{14} d x-4620 \ln (F)^{4} b^{4} c^{6} d^{6} x^{6}-3960 \ln (F)^{4} b^{4} c^{7} d^{5} x^{5}-2475 \ln (F)^{4} b^{4} c^{8} d^{4} x^{4}
$$

$$
-1100 \ln (F)^{4} b^{4} c^{9} d^{3} x^{3}+180 c d^{8} x^{8} \ln (F)^{3} b^{3}-330 \ln (F)^{4} b^{4} c^{10} d^{2} x^{2}+720 c^{2} d^{7} x^{7} \ln (F)^{3} b^{3}-60 \ln (F)^{4} b^{4} c^{11} d x+1680 \ln (F)^{3} b^{3} c^{3} d^{6} x^{6}
$$

$$
+2520 \ln (F)^{3} b^{3} c^{4} d^{5} x^{5}+2520 \ln (F)^{3} b^{3} c^{5} d^{4} x^{4}+1680 \ln (F)^{3} b^{3} c^{6} d^{3} x^{3}+720 \ln (F)^{3} b^{3} c^{7} d^{2} x^{2}+180 \ln (F)^{3} b^{3} c^{8} d x-360 c d^{5} x^{5} \ln (F)^{2} b^{2}
$$

$$
-900 \ln (F)^{2} b^{2} c^{2} d^{4} x^{4}-1200 \ln (F)^{2} b^{2} c^{3} d^{3} x^{3}-900 \ln (F)^{2} b^{2} c^{4} d^{2} x^{2}-360 \ln (F)^{2} b^{2} c^{5} d x+15 d^{14} c x^{14} \ln (F)^{5} b^{5}+105 d^{13} c^{2} x^{13} \ln (F)^{5} b^{5}
$$

$$
+455 \ln (F)^{5} b^{5} c^{3} d^{12} x^{12}+1365 \ln (F)^{5} b^{5} c^{4} d^{11} x^{11}+3003 \ln (F)^{5} b^{5} c^{5} d^{10} x^{10}+5005 \ln (F)^{5} b^{5} c^{6} d^{9} x^{9}+6435 \ln (F)^{5} b^{5} c^{7} d^{8} x^{8}+6435 \ln (F)^{5} b^{5} c^{8} d^{7} x^{7}
$$

$$
\left.+5005 \ln (F)^{5} b^{5} c^{9} d^{6} x^{6}+d^{15} x^{15} \ln (F)^{5} b^{5}-5 d^{12} x^{12} \ln (F)^{4} b^{4}+20 d^{9} x^{9} \ln (F)^{3} b^{3}-60 d^{6} x^{6} \ln (F)^{2} b^{2}+360 \ln (F) b c d^{2} x^{2}+360 \ln (F) b c^{2} d x\right)
$$

$$
F^{\left.b d^{3} x^{3}+3 b c d^{2} x^{2}+3 b c^{2} d x+b c^{3}+a\right)}
$$

Problem 76: Result more than twice size of optimal antiderivative.

$$
\int F^{a+b(d x+c)^{3}}(d x+c)^{14} \mathrm{~d} x
$$

Optimal(type 3, 86 leaves, 1 step):

$$
\frac{F^{a+b(d x+c)^{3}}\left(24-24 b(d x+c)^{3} \ln (F)+12 b^{2}(d x+c)^{6} \ln (F)^{2}-4 b^{3}(d x+c)^{9} \ln (F)^{3}+b^{4}(d x+c)^{12} \ln (F)^{4}\right)}{3 b^{5} d \ln (F)^{5}}
$$

Result(type 3, 583 leaves):
$\frac{1}{3 \ln (F)^{5} b^{5} d}\left(\left(24-24 \ln (F) b c^{3}+\ln (F)^{4} b^{4} c^{12}-4 \ln (F)^{3} b^{3} c^{9}+12 \ln (F)^{2} b^{2} c^{6}-24 d^{3} x^{3} b \ln (F)+12 c d^{11} x^{11} \ln (F)^{4} b^{4}+66 c^{2} d^{10} x^{10} \ln (F)^{4} b^{4}\right.\right.$

$$
+220 \ln (F)^{4} b^{4} c^{3} d^{9} x^{9}+495 \ln (F)^{4} b^{4} c^{4} d^{8} x^{8}+792 \ln (F)^{4} b^{4} c^{5} d^{7} x^{7}+924 \ln (F)^{4} b^{4} c^{6} d^{6} x^{6}+792 \ln (F)^{4} b^{4} c^{7} d^{5} x^{5}+495 \ln (F)^{4} b^{4} c^{8} d^{4} x^{4}
$$

$$
+220 \ln (F)^{4} b^{4} c^{9} d^{3} x^{3}-36 c d^{8} x^{8} \ln (F)^{3} b^{3}+66 \ln (F)^{4} b^{4} c^{10} d^{2} x^{2}-144 c^{2} d^{7} x^{7} \ln (F)^{3} b^{3}+12 \ln (F)^{4} b^{4} c^{11} d x-336 \ln (F)^{3} b^{3} c^{3} d^{6} x^{6}
$$

$$
-504 \ln (F)^{3} b^{3} c^{4} d^{5} x^{5}-504 \ln (F)^{3} b^{3} c^{5} d^{4} x^{4}-336 \ln (F)^{3} b^{3} c^{6} d^{3} x^{3}-144 \ln (F)^{3} b^{3} c^{7} d^{2} x^{2}-36 \ln (F)^{3} b^{3} c^{8} d x+72 c d^{5} x^{5} \ln (F)^{2} b^{2}
$$

$$
+180 \ln (F)^{2} b^{2} c^{2} d^{4} x^{4}+240 \ln (F)^{2} b^{2} c^{3} d^{3} x^{3}+180 \ln (F)^{2} b^{2} c^{4} d^{2} x^{2}+72 \ln (F)^{2} b^{2} c^{5} d x+d^{12} x^{12} \ln (F)^{4} b^{4}-4 d^{9} x^{9} \ln (F)^{3} b^{3}+12 d^{6} x^{6} \ln (F)^{2} b^{2}
$$

$$
\left.-72 \ln (F) b c d^{2} x^{2}-72 \ln (F) b c^{2} d x\right) F^{\left.b d^{3} x^{3}+3 b c d^{2} x^{2}+3 b c^{2} d x+b c^{3}+a\right)}
$$

[^1]$$
\int F^{a+b(d x+c)^{3}}(d x+c)^{8} \mathrm{~d} x
$$

Optimal(type 3, 90 leaves, 3 steps):

$$
\frac{2 F^{a+b(d x+c)^{3}}}{3 b^{3} d \ln (F)^{3}}-\frac{2 F^{a+b(d x+c)^{3}}(d x+c)^{3}}{3 b^{2} d \ln (F)^{2}}+\frac{F^{a+b(d x+c)^{3}}(d x+c)^{6}}{3 b d \ln (F)}
$$

Result(type 3, 199 leaves):
$\frac{1}{3 \ln (F)^{3} b^{3} d}\left(\left(d^{6} x^{6} \ln (F)^{2} b^{2}+6 c d^{5} x^{5} \ln (F)^{2} b^{2}+15 \ln (F)^{2} b^{2} c^{2} d^{4} x^{4}+20 \ln (F)^{2} b^{2} c^{3} d^{3} x^{3}+15 \ln (F)^{2} b^{2} c^{4} d^{2} x^{2}+6 \ln (F)^{2} b^{2} c^{5} d x+\ln (F)^{2} b^{2} c^{6}\right.\right.$
$\left.-2 d^{3} x^{3} b \ln (F)-6 \ln (F) b c d^{2} x^{2}-6 \ln (F) b c^{2} d x-2 \ln (F) b c^{3}+2\right) F^{\left.b d^{3} x^{3}+3 b c d^{2} x^{2}+3 b c^{2} d x+b c^{3}+a\right)}$

Problem 78: Unable to integrate problem.

$$
\int \frac{F^{a+b(d x+c)^{3}}}{(d x+c)^{7}} \mathrm{~d} x
$$

Optimal(type 4, 81 leaves, 3 steps):

$$
-\frac{F^{a+b(d x+c)^{3}}}{6 d(d x+c)^{6}}-\frac{b F^{a+b(d x+c)^{3}} \ln (F)}{6 d(d x+c)^{3}}+\frac{b^{2} F^{a} \operatorname{Ei}\left(b(d x+c)^{3} \ln (F)\right) \ln (F)^{2}}{6 d}
$$

Result(type 8, 23 leaves):

$$
\int \frac{F^{a+b(d x+c)^{3}}}{(d x+c)^{7}} \mathrm{~d} x
$$

Problem 79: Unable to integrate problem.

$$
\int F^{a+b(d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 41 leaves, 1 step):

$$
\begin{gathered}
-\frac{F^{a}(d x+c) \Gamma\left(\frac{1}{3},-b(d x+c)^{3} \ln (F)\right)}{3 d\left(-b(d x+c)^{3} \ln (F)\right)^{1 / 3}} \\
\int F^{a+b(d x+c)^{3}} \mathrm{~d} x
\end{gathered}
$$

Problem 80: Unable to integrate problem.

$$
\int f^{a+b \sqrt{d x+c}} \mathrm{~d} x
$$

[^2]$$
-\frac{2 f^{a+b \sqrt{d x+c}}}{b^{2} d \ln (f)^{2}}+\frac{2 f^{a+b \sqrt{d x+c}} \sqrt{d x+c}}{b d \ln (f)}
$$

Result(type 8, 15 leaves):

$$
\int f^{a+b \sqrt{d x+c}} \mathrm{~d} x
$$

Problem 81: Result more than twice size of optimal antiderivative.

$$
\int F^{a+\frac{b}{d x+c}}(d x+c)^{4} \mathrm{~d} x
$$

Optimal(type 4, 28 leaves, 1 step):

$$
\frac{F^{a}(d x+c)^{5} \mathrm{Ei}_{6}\left(-\frac{b \ln (F)}{d x+c}\right)}{d}
$$

Result(type 4, 633 leaves):

$$
\begin{aligned}
& \frac{d^{4} F^{\frac{x a d+a c+b}{d x+c}} x^{5}}{5}+d^{3} F^{\frac{x a d+a c+b}{d x+c}} c x^{4}+2 d^{2} F^{\frac{x a d+a c+b}{d x+c}} c^{2} x^{3}+2 d F^{\frac{x a d+a c+b}{d x+c}} c^{3} x^{2}+F^{\frac{x a d+a c+b}{d x+c}} c^{4} x+\frac{F^{\frac{x a d+a c+b}{d x+c}} c^{5}}{5 d} \\
& +\frac{d^{3} b \ln (F) F \frac{\frac{x a d+a c+b}{d x+c}}{x^{4}}}{20}+\frac{d^{2} b \ln (F) F \frac{x a d+a c+b}{d x+c}}{c x^{3}}+\frac{3 d b \ln (F) F^{\frac{x a d+a c+b}{d x+c}} c^{2} x^{2}}{10}+\frac{b \ln (F) F^{\frac{x a d+a c+b}{d x+c}} c^{3} x}{5}+\frac{b \ln (F) F}{20 d} \\
& +\frac{d^{2} b^{2} \ln (F)^{2} F \frac{x a d+a c+b}{d x+c} x^{3}}{60}+\frac{d b^{2} \ln (F)^{2} F \frac{x a d+a c+b}{d x+c}}{c x^{2}}+\frac{b^{2} \ln (F)^{2} F^{\frac{x a d+a c+b}{d x+c}} c^{2} x}{20}+\frac{b^{2} \ln (F)^{2} F^{\frac{x a d+a c+b}{d x+c}} c^{3}}{60 d} \\
& +\frac{d b^{3} \ln (F)^{3} F{ }^{\frac{x a d+a c+b}{d x+c}} x^{2}}{120}+\frac{b^{3} \ln (F)^{3} F^{\frac{x a d+a c+b}{d x+c}} c x}{60}+\frac{b^{3} \ln (F)^{3} F^{\frac{x a d+a c+b}{d x+c}} c^{2}}{120 d}+\frac{b^{4} \ln (F)^{4} F^{\frac{x a d+a c+b}{d x+c}}}{120}+\frac{b^{4} \ln (F)^{4} F}{120 d} d x+c c^{\frac{x a d+a c+b}{d x+c}} \\
& +\frac{b^{5} \ln (F)^{5} F^{a} \mathrm{Ei}_{1}\left(-\frac{b \ln (F)}{d x+c}\right)}{120 d}
\end{aligned}
$$

Problem 83: Result more than twice size of optimal antiderivative.

$$
\int \frac{F^{a+\frac{b}{d x+c}}}{(d x+c)^{6}} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 1 step):

$$
-\frac{F^{a+\frac{b}{d x+c}}\left(24(d x+c)^{4}-24 b(d x+c)^{3} \ln (F)+12 b^{2}(d x+c)^{2} \ln (F)^{2}-4 b^{3}(d x+c) \ln (F)^{3}+b^{4} \ln (F)^{4}\right)}{b^{5} d(d x+c)^{4} \ln (F)^{5}}
$$

Result(type 3, 328 leaves):

$$
\begin{aligned}
& \frac{1}{(d x+c)^{5}}\left(-\frac{24 d^{4} x^{5} \mathrm{e}^{\left(a+\frac{b}{d x+c}\right) \ln (F)}}{b^{5} \ln (F)^{5}}-\frac{\left(b^{4} \ln (F)^{4}-8 \ln (F)^{3} b^{3} c+36 \ln (F)^{2} b^{2} c^{2}-96 \ln (F) b c^{3}+120 c^{4}\right) x \mathrm{e}^{\left(a+\frac{b}{d x+c}\right) \ln (F)}}{\ln (F)^{5} b^{5}}\right. \\
& +\frac{4 d\left(\ln (F)^{3} b^{3}-9 \ln (F)^{2} b^{2} c+36 \ln (F) b c^{2}-60 c^{3}\right) x^{2} \mathrm{e}^{\left(a+\frac{b}{d x+c}\right) \ln (F)}}{b^{5} \ln (F)^{5}}-\frac{12 d^{2}\left(\ln (F)^{2} b^{2}-8 b c \ln (F)+20 c^{2}\right) x^{3} \mathrm{e}^{\left(a+\frac{b}{d x+c}\right) \ln (F)}}{b^{5} \ln (F)^{5}} \\
& \left.\quad+\frac{24 d^{3}(b \ln (F)-5 c) x^{4} \mathrm{e}^{\left(a+\frac{b}{d x+c}\right) \ln (F)}}{b^{5} \ln (F)^{5}}-\frac{\left(b^{4} \ln (F)^{4}-4 \ln (F)^{3} b^{3} c+12 \ln (F)^{2} b^{2} c^{2}-24 \ln (F) b c^{3}+24 c^{4}\right) c \mathrm{e}^{\left(a+\frac{b}{d x+c}\right) \ln (F)}}{\ln (F)^{5} b^{5} d}\right)
\end{aligned}
$$

Problem 84: Result more than twice size of optimal antiderivative.

$$
\int^{a+\frac{b}{(d x+c)^{2}}}(d x+c)^{7} \mathrm{~d} x
$$

Optimal(type 4, 29 leaves, 1 step):

$$
\frac{F^{a}(d x+c)^{8} \mathrm{Ei}_{5}\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)}{2 d}
$$

Result(type 4, 645 leaves):
$\frac{F^{a} d^{7} F^{\frac{b}{(d x+c)^{2}}} x^{8}}{8}+\frac{F^{a} F^{\frac{b}{(d x+c)^{2}}} c^{8}}{8 d}+F^{a} F^{\frac{b}{(d x+c)^{2}}} c^{7} x+F^{a} d^{6} F^{\frac{b}{(d x+c)^{2}}} c x^{7}+\frac{7 F^{a} d^{5} F^{\frac{b}{(d x+c)^{2}}} c^{2} x^{6}}{2}+7 F^{a} d^{4} F^{\overline{(d x+c)^{2}}} c^{3} x^{5}+\frac{b 5 F^{a} d^{3} F^{(d x+c)^{2}} c^{4} x^{4}}{4}$

$$
+7 F^{a} d^{2} F^{\frac{b}{(d x+c)^{2}}} c^{5} x^{3}+\frac{7 F^{a} d F^{\frac{b}{(d x+c)^{2}}} c^{6} x^{2}}{2}+\frac{F^{a} b^{4} \ln (F)^{4} \mathrm{Ei}_{1}\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)}{48 d}+\frac{F^{a} b \ln (F) F^{\frac{b}{(d x+c)^{2}} c^{6}}}{24 d}+\frac{F^{a} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}} c^{4}}}{48 d}
$$

$$
+\frac{F^{a} b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}}} c^{2}}{48 d}+\frac{F^{a} d^{5} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} x^{6}}{24}+\frac{F^{a} d^{3} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} x^{4}}{48}+\frac{F^{a} d b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}}} x^{2}}{48}+\frac{F^{a} b \ln (F) F^{(d x+c)^{2}} c^{5} x}{4}
$$

$$
+\frac{F^{a} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c^{3} x}{12}+\frac{F^{a} b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}}} c x}{24}+\frac{F^{a} d^{4} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} c x^{5}}{4}+\frac{5 F^{a} d^{3} b \ln (F) F^{\frac{b}{(d x+c)^{2}} c^{2} x^{4}}}{8}
$$

$$
+\frac{5 F^{a} d^{2} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} c^{3} x^{3}}{6}+\frac{5 F^{a} d b \ln (F) F^{\frac{b}{(d x+c)^{2}}} c^{4} x^{2}}{8}+\frac{F^{a} d^{2} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c x^{3}}{12}+\frac{F^{a} d b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c^{2} x^{2}}{8}
$$

Problem 85: Result more than twice size of optimal antiderivative.

$$
\int F^{a+\frac{b}{(d x+c)^{2}}}(d x+c)^{10} \mathrm{~d} x
$$

Optimal(type 4, 218 leaves, 1 step):

$$
\begin{aligned}
\frac{1}{2 d} & F^{a}(d x+c)^{11}\left(\frac{64 \sqrt{\pi} \operatorname{erfc}\left(\sqrt{-\frac{b \ln (F)}{(d x+c)^{2}}}\right)}{10395}-\frac{64 \mathrm{e}^{\frac{b \ln (F)}{(d x+c)^{2}}}}{10395 \sqrt{-\frac{b \ln (F)}{(d x+c)^{2}}}}+\frac{32 \mathrm{e}^{\frac{b \ln (F)}{(d x+c)^{2}}}}{10395\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)^{3 / 2}}-\frac{16 \mathrm{e}^{\frac{b \ln (F)}{(d x+c)^{2}}}}{3465\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)^{5 / 2}}\right. \\
& \left.\left.+\frac{8 \mathrm{e}^{\frac{b \ln (F)}{(d x+c)^{2}}}}{693\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)^{7 / 2}}-\frac{4 \mathrm{e}^{\frac{b \ln (F)}{(d x+c)^{2}}}}{99\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)^{9 / 2}}+\frac{2 \mathrm{e}^{\frac{b \ln (F)}{(d x+c)^{2}}}}{11\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)^{11 / 2}}\right)\left(-\frac{b \ln (F)}{(d x+c)^{2}}\right)^{11 / 2}\right)
\end{aligned}
$$

Result(type 4, 1172 leaves):

$$
\frac{2 F^{a} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} c^{8} x}{11}+\frac{2 F^{a} d^{8} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} x^{9}}{99}+\frac{4 F^{a} d^{6} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} x^{7}}{693}+\frac{8 F^{a} d^{4} b^{3} \ln (F)^{3} F^{(d x+c)^{2}} x^{5}}{3465}
$$

$$
+\frac{16 F^{a} d^{2} b^{4} \ln (F)^{4} F^{\frac{b}{(d x+c)^{2}}} x^{3}}{10395}+\frac{2 F^{a} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} c^{9}}{99 d}+\frac{4 F^{a} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c^{7}}{693 d}+\frac{8 F^{a} b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}} c^{5}}}{3465 d}
$$

$$
+\frac{16 F^{a} b^{4} \ln (F)^{4} F^{\frac{b}{(d x+c)^{2}}} c^{3}}{10395 d}+\frac{32 F^{a} b^{5} \ln (F)^{5} F^{\frac{b}{(d x+c)^{2}}} c}{10395 d}+\frac{16 F^{a} b^{4} \ln (F)^{4} F^{\frac{b}{(d x+c)^{2}}} c^{2} x}{3465}+\frac{4 F^{a} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}} c^{6} x}}{99}
$$

$$
+\frac{8 F^{a} b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}}} c^{4} x}{693}+\frac{8 F^{a} d^{6} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} c^{2} x^{7}}{11}+\frac{56 F^{a} d^{5} b \ln (F) F^{\frac{b}{(d x+c)^{2}} c^{3} x^{6}}}{33}+\frac{28 F^{a} d^{4} b \ln (F) F^{(d x+c)^{2}} c^{4} x^{5}}{11}
$$

$$
+\frac{28 F^{a} d^{3} b \ln (F) F^{\overline{(d x+c)^{2}}} c^{5} x^{4}}{11}+\frac{56 F^{a} d^{2} b \ln (F) F^{\overline{(d x+c)^{2}}} c^{6} x^{3}}{33}+\frac{8 F^{a} d b \ln (F) F^{\overline{(d x+c)^{2}} c^{7} x^{2}}}{11}+\frac{4 F^{a} d^{5} b^{2} \ln (F)^{2} F^{\overline{(d x+c)^{2}}} c x^{6}}{99}
$$

$$
+\frac{4 F^{a} d^{4} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c^{2} x^{5}}{33}+\frac{20 F^{a} d^{3} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c^{3} x^{4}}{99}+\frac{20 F^{a} d^{2} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c^{4} x^{3}}{99}+\frac{4 F^{a} d b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}} c^{5} x^{2}}}{33}
$$

$$
+\frac{8 F^{a} d^{3} b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}}} c x^{4}}{693}+\frac{16 F^{a} d^{2} b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}}} c^{2} x^{3}}{693}+\frac{16 F^{a} d b^{3} \ln (F)^{3} F^{\frac{b}{(d x+c)^{2}}} c^{3} x^{2}}{693}+\frac{16 F^{a} d b^{4} \ln (F)^{4} F^{\frac{b}{(d x+c)^{2}} c x^{2}}}{3465}
$$

$$
+\frac{2 F^{a} d^{7} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} c x^{8}}{11}-\frac{32 F^{a} b^{6} \ln (F)^{6} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{-b \ln (F)}}{d x+c}\right)}{10395 d \sqrt{-b \ln (F)}}+\frac{32 F^{a} b^{5} \ln (F)^{5} F^{\frac{b}{(d x+c)^{2}} x}}{10395}+F^{a} d^{9} F^{\frac{b}{(d x+c)^{2}} c x^{10}+5 F^{a} d^{8} F^{(d x+c)^{2}} c^{2} x^{9}}
$$

$$
\begin{aligned}
& +15 F^{a} d^{7} F^{\frac{b}{(d x+c)^{2}}} c^{3} x^{8}+30 F^{a} d^{6} F^{\frac{b}{(d x+c)^{2}}} c^{4} x^{7}+42 F^{a} d^{5} F^{(d x+c)^{2}} c^{5} x^{6}+42 F^{a} d^{4} F^{\frac{b}{(d x+c)^{2}}} c^{6} x^{5}+30 F^{a} d^{3} F^{\frac{b}{(d x+c)^{2}}} c^{7} x^{4}+15 F^{a} d^{2} F^{\frac{b}{(d x+c)^{2}}} c^{8} x^{3} \\
& +5 F^{a} d F^{\frac{b}{(d x+c)^{2}}} c^{9} x^{2}+F^{a} F^{\frac{b}{(d x+c)^{2}}} c^{10} x+\frac{F^{a} d^{10} F^{(d x+c)^{2}}}{11} x^{11}+\frac{F^{a} F^{\frac{b}{(d x+c)^{2}}} c^{11}}{11 d}
\end{aligned}
$$

Problem 86: Result more than twice size of optimal antiderivative.

$$
\int F^{a+\frac{b}{(d x+c)^{2}}}(d x+c)^{4} \mathrm{~d} x
$$

Optimal(type 4, 118 leaves, 5 steps):

$$
\frac{F^{a+\frac{b}{(d x+c)^{2}}(d x+c)^{5}}}{5 d}+\frac{2 b F^{a+\frac{b}{(d x+c)^{2}}}(d x+c)^{3} \ln (F)}{15 d}+\frac{4 b^{2} F^{a+\frac{b}{(d x+c)^{2}}(d x+c) \ln (F)^{2}}}{15 d}-\frac{4 b^{5 / 2} F^{a} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{\ln (F)}}{d x+c}\right) \ln (F)^{5} / 2 \sqrt{\pi}}{15 d}
$$

Result(type 4, 323 leaves):

$$
\begin{aligned}
& \frac{F^{a} d^{4} F^{\frac{b}{(d x+c)^{2}}} x^{5}}{5}+F^{a} d^{3} F^{\frac{b}{(d x+c)^{2}}} c x^{4}+2 F^{a} d^{2} F^{\frac{b}{(d x+c)^{2}}} c^{2} x^{3}+2 F^{a} d F^{\frac{b}{(d x+c)^{2}}} c^{3} x^{2}+F^{a} F^{\frac{b}{(d x+c)^{2}}} c^{4} x+\frac{F^{a} F^{\frac{b}{(d x+c)^{2}} c^{5}}}{5 d} \\
& \quad+\frac{2 F^{a} d^{2} b \ln (F) F^{\frac{b}{(d x+c)^{2}}} x^{3}}{15}+\frac{2 F^{a} d b \ln (F) F^{(d x+c)^{2}} c x^{2}}{5}+\frac{2 F^{a} b \ln (F) F^{\frac{b}{(d x+c)^{2}} c^{2} x}}{5}+\frac{2 F^{a} b \ln (F) F^{\overline{(d x+c)^{2}} c^{3}}}{15 d}+\frac{b F^{a} b^{2} \ln (F)^{2} F^{(d x+c)^{2}} x}{15} \\
& \quad+\frac{4 F^{a} b^{2} \ln (F)^{2} F^{\frac{b}{(d x+c)^{2}}} c}{15 d}-\frac{4 F^{a} b^{3} \ln (F)^{3} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{-b \ln (F)}}{d x+c}\right)}{15 d \sqrt{-b \ln (F)}}
\end{aligned}
$$

Problem 92: Unable to integrate problem.

$$
\int^{a+\frac{b}{(d x+c)^{3}}}(d x+c)^{8} \mathrm{~d} x
$$

Optimal(type 4, 113 leaves, 4 steps):

$$
\frac{F^{a+\frac{b}{(d x+c)^{3}}(d x+c)^{9}}}{9 d}+\frac{b F^{a+\frac{b}{(d x+c)^{3}}}(d x+c)^{6} \ln (F)}{18 d}+\frac{b^{2} F^{a+\frac{b}{(d x+c)^{3}}(d x+c)^{3} \ln (F)^{2}}}{18 d}-\frac{b^{3} F^{a} \operatorname{Ei}\left(\frac{b \ln (F)}{(d x+c)^{3}}\right) \ln (F)^{3}}{18 d}
$$

Result(type 8, 23 leaves):

$$
\int F^{a+\frac{b}{(d x+c)^{3}}}(d x+c)^{8} \mathrm{~d} x
$$

Problem 93: Unable to integrate problem.

$$
\int F^{a+\frac{b}{(d x+c)^{3}}}(d x+c)^{2} \mathrm{~d} x
$$

Optimal(type 4, 49 leaves, 2 steps):

$$
\frac{F^{a+\frac{b}{(d x+c)^{3}}}(d x+c)^{3}}{3 d}-\frac{b F^{a} \operatorname{Ei}\left(\frac{b \ln (F)}{(d x+c)^{3}}\right) \ln (F)}{3 d}
$$

Result(type 8, 23 leaves):

$$
\int F^{a+\frac{b}{(d x+c)^{3}}}(d x+c)^{2} \mathrm{~d} x
$$

Problem 95: Result more than twice size of optimal antiderivative.

$$
\int \frac{F^{a+\frac{b}{(d x+c)^{3}}}}{(d x+c)^{7}} \mathrm{~d} x
$$

Optimal(type 3, 58 leaves, 2 steps):

$$
\frac{F^{a+\frac{b}{(d x+c)^{3}}}}{3 b^{2} d \ln (F)^{2}}-\frac{F^{a+\frac{b}{(d x+c)^{3}}}}{3 b d(d x+c)^{3} \ln (F)}
$$

Result(type 3, 260 leaves):

$$
\begin{aligned}
& \frac{1}{(d x+c)^{6}}\left(\frac{d^{5} x^{6} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{3 \ln (F)^{2} b^{2}}-\frac{c^{2}\left(-2 c^{3}+b \ln (F)\right) x \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{2} b^{2}}-\frac{c^{3}\left(-c^{3}+b \ln (F)\right) \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{3 \ln (F)^{2} b^{2} d}\right. \\
& -\frac{d^{2}\left(-20 c^{3}+b \ln (F)\right) x^{3} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{3 \ln (F)^{2} b^{2}}+\frac{5 d^{3} c^{2} x^{4} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{2} b^{2}}+\frac{2 d^{4} c x^{5} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{2} b^{2}} \\
& \left.\quad-\frac{c d\left(-5 c^{3}+b \ln (F)\right) x^{2} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{2} b^{2}}\right)
\end{aligned}
$$

Problem 96: Result more than twice size of optimal antiderivative.

$$
\int \frac{F^{a+\frac{b}{(d x+c)^{3}}}}{(d x+c)^{10}} \mathrm{~d} x
$$

Optimal(type 3, 90 leaves, 3 steps):

$$
-\frac{2 F^{a+\frac{b}{(d x+c)^{3}}}}{3 b^{3} d \ln (F)^{3}}+\frac{2 F^{a+\frac{b}{(d x+c)^{3}}}}{3 b^{2} d(d x+c)^{3} \ln (F)^{2}}-\frac{F^{a+\frac{b}{(d x+c)^{3}}}}{3 b d(d x+c)^{6} \ln (F)}
$$

Result(type 3, 433 leaves):
$\frac{1}{(d x+c)^{9}}\left(-\frac{2 d^{8} x^{9} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{3 \ln (F)^{3} b^{3}}-\frac{c^{2}\left(6 c^{6}-4 \ln (F) b c^{3}+\ln (F)^{2} b^{2}\right) x \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{3} b^{3}}\right.$
$-\frac{c^{3}\left(2 c^{6}-2 \ln (F) b c^{3}+\ln (F)^{2} b^{2}\right) \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{3 \ln (F)^{3} b^{3} d}-\frac{d^{2}\left(168 c^{6}-40 \ln (F) b c^{3}+\ln (F)^{2} b^{2}\right) x^{3} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{3 \ln (F)^{3} b^{3}}$
$+\frac{2 d^{5}\left(-84 c^{3}+b \ln (F)\right) x^{6} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{3 \ln (F)^{3} b^{3}}-\frac{24 d^{6} c^{2} x^{7} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{3} b^{3}}-\frac{6 d^{7} c x^{8} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{3} b^{3}}$
$-\frac{c d\left(24 c^{6}-10 \ln (F) b c^{3}+\ln (F)^{2} b^{2}\right) x^{2} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{3} b^{3}}+\frac{4 c d^{4}\left(-21 c^{3}+b \ln (F)\right) x^{5} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{3} b^{3}}$
$\left.+\frac{2 c^{2} d^{3}\left(-42 c^{3}+5 b \ln (F)\right) x^{4} \mathrm{e}^{\left(a+\frac{b}{(d x+c)^{3}}\right) \ln (F)}}{\ln (F)^{3} b^{3}}\right)$

Problem 97: Unable to integrate problem.

$$
\int F^{a+\frac{b}{(d x+c)^{3}}}(d x+c) \mathrm{d} x
$$

Optimal(type 4, 43 leaves, 1 step):

$$
\frac{F^{a}(d x+c)^{2} \Gamma\left(-\frac{2}{3},-\frac{b \ln (F)}{(d x+c)^{3}}\right)\left(-\frac{b \ln (F)}{(d x+c)^{3}}\right)^{2 / 3}}{3 d}
$$

Result(type 8, 21 leaves):

$$
\int F^{a+\frac{b}{(d x+c)^{3}}}(d x+c) \mathrm{d} x
$$

Problem 98: Unable to integrate problem.

$$
\int F^{a+b(d x+c)^{n}} \mathrm{~d} x
$$

Optimal(type 4, 50 leaves, 1 step):

$$
\frac{F^{a}(d x+c) \Gamma\left(\frac{1}{n},-b(d x+c)^{n} \ln (F)\right)}{d n\left(-b(d x+c)^{n} \ln (F)\right)^{\frac{1}{n}}}
$$

Result(type 8, 15 leaves):

$$
\int F^{a+b(d x+c)^{n}} \mathrm{~d} x
$$

Problem 103: Result more than twice size of optimal antiderivative.

$$
\int F^{a+b(d x+c)^{2}}(f x+e)^{5} \mathrm{~d} x
$$

Optimal(type 4, 474 leaves, 14 steps):

$$
\begin{aligned}
& \frac{f^{5} F^{a+b(d x+c)^{2}}}{b^{3} d^{6} \ln (F)^{3}}-\frac{5 f^{3}(-c f+d e)^{2} F^{a+b(d x+c)^{2}}}{b^{2} d^{6} \ln (F)^{2}}-\frac{15 f^{4}(-c f+d e) F^{a+b(d x+c)^{2}(d x+c)}}{4 b^{2} d^{6} \ln (F)^{2}}-\frac{f^{5} F^{a+b(d x+c)^{2}(d x+c)^{2}}}{b^{2} d^{6} \ln (F)^{2}}+\frac{5 f(-c f+d e)^{4} F^{a+b(d x+c)^{2}}}{2 b d^{6} \ln (F)} \\
& +\frac{5 f^{2}(-c f+d e)^{3} F^{a+b(d x+c)^{2}}(d x+c)}{b d^{6} \ln (F)}+\frac{5 f^{3}(-c f+d e)^{2} F^{a+b(d x+c)^{2}(d x+c)^{2}}}{b d^{6} \ln (F)}+\frac{5 f^{4}(-c f+d e) F^{a+b(d x+c)^{2}}(d x+c)^{3}}{2 b d^{6} \ln (F)} \\
& +\frac{f^{5} F^{a+b(d x+c)^{2}(d x+c)^{4}}}{2 b d^{6} \ln (F)}+\frac{15 f^{4}(-c f+d e) F^{a} \operatorname{erfi}((d x+c) \sqrt{b} \sqrt{\ln (F)}) \sqrt{\pi}}{8 b^{5 / 2} d^{6} \ln (F)^{5 / 2}}-\frac{5 f^{2}(-c f+d e)^{3} F^{a} \operatorname{erfi}((d x+c) \sqrt{b} \sqrt{\ln (F)}) \sqrt{\pi}}{2 b^{3 / 2} d^{6} \ln (F)^{3 / 2}} \\
& +\frac{(-c f+d e)^{5} F^{a} \operatorname{erfi}((d x+c) \sqrt{b} \sqrt{\ln (F)}) \sqrt{\pi}}{2 d^{6} \sqrt{b} \sqrt{\ln (F)}}
\end{aligned}
$$

Result(type 4, 1546 leaves):

$$
\begin{aligned}
& \frac{f^{5} x^{4} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b d^{2}}+\frac{f^{5} c^{4} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{6} \ln (F) b}-\frac{9 f^{5} c^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 d^{6} \ln (F)^{2} b^{2}}-\frac{f^{5} x^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{2} b^{2} d^{4}} \\
& -\frac{5 e^{2} f^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{2} b^{2} d^{4}}+\frac{5 e^{4} f F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b d^{2}}+\frac{f^{5} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{3} b^{3} d^{6}}+\frac{5 e f^{4} x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b d^{2}} \\
& -\frac{5 e f^{4} c^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{5} \ln (F) b}+\frac{25 e f^{4} c F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 d^{5} \ln (F)^{2} b^{2}}-\frac{15 e f^{4} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 \ln (F)^{2} b^{2} d^{4}}+\frac{5 e^{2} f^{3} x^{2} F^{b} d^{2} x^{2}+2 b c d x+b c^{2}+a}{\ln (F) b d^{2}} \\
& +\frac{5 e^{2} f^{3} c^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{d^{4} \ln (F) b}+\frac{5 e^{3} f^{2} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F) b d^{2}}-\frac{5 e^{3} f^{2} c F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{d^{3} \ln (F) b} \\
& -\frac{5 e^{3} f^{2} c^{2} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{d^{3} \sqrt{-b \ln (F)}}+\frac{5 e^{4} f c \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)})}-\frac{5 e f^{4} c x^{2} F^{b} d^{2} x^{2}+2 b c d x+b c^{2}+a}{2 d^{3} \ln (F) b}\right.}{2 d^{2} \sqrt{-b \ln (F)}} \\
& +\frac{5 e f^{4} c^{2} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{4} \ln (F) b}-\frac{5 e f^{4} c^{4} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d^{5} \sqrt{-b \ln (F)}}-\frac{5 e^{2} f^{3} c x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{d^{3} \ln (F) b}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{5 e^{2} f^{3} c^{3} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{d^{4} \sqrt{-b \ln (F)}}-\frac{f^{5} c x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{3} \ln (F) b}+\frac{f^{5} c^{2} x^{2} F^{b} d^{2} x^{2}+2 b c d x+b c^{2}+a}{2 d^{4} \ln (F) b} \\
& -\frac{f^{5} c^{3} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{5} \ln (F) b}+\frac{f^{5} c^{5} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d^{6} \sqrt{-b \ln (F)}}+\frac{7 f^{5} c x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 d^{5} \ln (F)^{2} b^{2}} \\
& +\frac{15 e f^{4} c^{2} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d^{5} \ln (F) b \sqrt{-b \ln (F)}}-\frac{15 e^{2} f^{3} c \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d^{4} \ln (F) b \sqrt{-b \ln (F)}} \\
& -\frac{5 f^{5} c^{3} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d^{6} \ln (F) b \sqrt{-b \ln (F)}}+\frac{15 f^{5} c \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{8 d^{6} \ln (F)^{2} b^{2} \sqrt{-b \ln (F)}} \\
& -\frac{15 e f^{4} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{8 \ln (F)^{2} b^{2} d^{5} \sqrt{-b \ln (F)}}+\frac{5 e^{3} f^{2} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 \ln (F) b d^{3} \sqrt{-b \ln (F)}} \\
& -\frac{e^{5} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{} \\
& 2 d \sqrt{-b \ln (F)}
\end{aligned}
$$

Problem 104: Result more than twice size of optimal antiderivative.

$$
\int F^{a+b(d x+c)^{2}}(f x+e)^{4} \mathrm{~d} x
$$

Optimal(type 4, 349 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{2 f^{3}(-c f+d e) F^{a+b(d x+c)^{2}}}{b^{2} d^{5} \ln (F)^{2}}-\frac{3 f^{4} F^{a+b(d x+c)^{2}}(d x+c)}{4 b^{2} d^{5} \ln (F)^{2}}+\frac{2 f(-c f+d e)^{3} F^{a+b(d x+c)^{2}}}{b d^{5} \ln (F)}+\frac{3 f^{2}(-c f+d e)^{2} F^{a+b(d x+c)^{2}}(d x+c)}{b d^{5} \ln (F)} \\
& +\frac{2 f^{3}(-c f+d e) F^{a+b(d x+c)^{2}(d x+c)^{2}}}{b d^{5} \ln (F)}+\frac{f^{4} F^{a+b(d x+c)^{2}}(d x+c)^{3}}{2 b d^{5} \ln (F)}+\frac{3 f^{4} F^{a} \operatorname{erfi}((d x+c) \sqrt{b} \sqrt{\ln (F)}) \sqrt{\pi}}{8 b^{5 / 2} d^{5} \ln (F)^{5 / 2}} \\
& -\frac{3 f^{2}(-c f+d e)^{2} F^{a} \operatorname{erfi}((d x+c) \sqrt{b} \sqrt{\ln (F)}) \sqrt{\pi}}{2 b^{3 / 2} d^{5} \ln (F)^{3 / 2}}+\frac{(-c f+d e)^{4} F^{a} \operatorname{erfi}((d x+c) \sqrt{b} \sqrt{\ln (F)}) \sqrt{\pi}}{2 d^{5} \sqrt{b} \sqrt{\ln (F)}}
\end{aligned}
$$

Result(type 4, 997 leaves):
$-\frac{e^{4} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d \sqrt{-b \ln (F)}}+\frac{f^{4} x^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 \ln (F) b d^{2}}-\frac{f^{4} c x^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{3} \ln (F) b}+\frac{f^{4} c^{2} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{4} \ln (F) b}$

$$
\begin{aligned}
& -\frac{f^{4} c^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{2 d^{5} \ln (F) b}-\frac{f^{4} c^{4} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d^{5} \sqrt{-b \ln (F)}}+\frac{3 f^{4} c^{2} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 d^{5} \ln (F) b \sqrt{-b \ln (F)}} \\
& +\frac{5 f^{4} c F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 d^{5} \ln (F)^{2} b^{2}}-\frac{3 f^{4} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{4 \ln (F)^{2} b^{2} d^{4}}-\frac{3 f^{4} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)})}\right.}{8 \ln (F)^{2} b^{2} d^{5} \sqrt{-b \ln (F)}}+\frac{2 e f^{3} x^{2} F^{b} d^{2} x^{2}+2 b c d x+b c^{2}+a}{\ln (F) b d^{2}} \\
& -\frac{2 e f^{3} c x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{d^{3} \ln (F) b}+\frac{2 e f^{3} c^{2} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{d^{4} \ln (F) b}+\frac{2 e f^{3} c^{3} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)})}\right.}{d^{4} \sqrt{-b \ln (F)}} \\
& -\frac{3 e f^{3} c \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{d^{4} \ln (F) b \sqrt{-b \ln (F)}}-\frac{2 e f^{3} F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F)^{2} b^{2} d^{4}}+\frac{3 e^{2} f^{2} x F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F) b d^{2}} \\
& -\frac{3 e^{2} f^{2} c F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{d^{3} \ln (F) b}-\frac{3 e^{2} f^{2} c^{2} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{d^{3} \sqrt{-b \ln (F)}}+\frac{3 e^{2} f^{2} \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{2 \ln (F) b d^{3} \sqrt{-b \ln (F)}} \\
& +\frac{2 e^{3} f F^{b d^{2} x^{2}+2 b c d x+b c^{2}+a}}{\ln (F) b d^{2}}+\frac{2 e^{3} f c \sqrt{\pi} F^{a} \operatorname{erf}\left(-d \sqrt{-b \ln (F)} x+\frac{c b \ln (F)}{\sqrt{-b \ln (F)}}\right)}{d^{2} \sqrt{-b \ln (F)}}
\end{aligned}
$$

Problem 107: Unable to integrate problem.

$$
\int \mathrm{e}^{e(d x+c)^{3}}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 111 leaves, 5 steps):

$$
\frac{b^{2} \mathrm{e}^{e(d x+c)^{3}}}{3 d^{3} e}-\frac{(-a d+b c)^{2}(d x+c) \Gamma\left(\frac{1}{3},-e(d x+c)^{3}\right)}{3 d^{3}\left(-e(d x+c)^{3}\right)^{1 / 3}}+\frac{2 b(-a d+b c)(d x+c)^{2} \Gamma\left(\frac{2}{3},-e(d x+c)^{3}\right)}{3 d^{3}\left(-e(d x+c)^{3}\right)^{2 / 3}}
$$

Result(type 8, 20 leaves):

$$
\int \mathrm{e}^{e(d x+c)^{3}}(b x+a)^{2} \mathrm{~d} x
$$

Problem 111: Unable to integrate problem.

$$
\int \mathrm{e}^{\frac{e}{(d x+c)^{3}}}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 134 leaves, 6 steps):

$$
\begin{aligned}
& \frac{b^{2} \mathrm{e}^{\frac{e}{(d x+c)^{3}}}(d x+c)^{3}}{3 d^{3}}-\frac{b^{2} e \operatorname{Ei}\left(\frac{e}{(d x+c)^{3}}\right)}{3 d^{3}}-\frac{2 b(-a d+b c)\left(-\frac{e}{(d x+c)^{3}}\right)^{2 / 3}(d x+c)^{2} \Gamma\left(-\frac{2}{3},-\frac{e}{(d x+c)^{3}}\right)}{3 d^{3}} \\
& \quad+\frac{(-a d+b c)^{2}\left(-\frac{e}{(d x+c)^{3}}\right)^{1 / 3}(d x+c) \Gamma\left(-\frac{1}{3},-\frac{e}{(d x+c)^{3}}\right)}{3 d^{3}}
\end{aligned}
$$

Result(type 8, 20 leaves):

$$
\int \mathrm{e}^{\frac{e}{(d x+c)^{3}}}(b x+a)^{2} \mathrm{~d} x
$$

Problem 112: Result more than twice size of optimal antiderivative.

$$
\int \frac{F^{e+\frac{f(b x+a)}{d x+c}}}{h x+g} \mathrm{~d} x
$$

Optimal(type 4, 104 leaves, 5 steps):

$$
-\frac{F^{e+\frac{b f}{d}} \operatorname{Ei}\left(-\frac{(-a d+b c) f \ln (F)}{d(d x+c)}\right)}{h}+\frac{F^{e+\frac{f(-a h+b g)}{-h c+g d}} \operatorname{Ei}\left(-\frac{(-a d+b c) f(h x+g) \ln (F)}{(-h c+g d)(d x+c)}\right)}{h}
$$

Result(type 4, 431 leaves):
$-\frac{d F^{\frac{a f h-b f g+c e h-d e g}{h c-g d}} \operatorname{Ei}_{1}\left(-\frac{f(a d-b c) \ln (F)}{d(d x+c)}-\frac{(f b+d e) \ln (F)}{d}-\frac{-\ln (F) a f h+\ln (F) b f g-\ln (F) c e h+\ln (F) d e g}{h c-g d}\right) a}{h(a d-b c)}$

$$
\begin{aligned}
& +\frac{F^{\frac{a f h-b f g+c e h-d e g}{h c-g d}} \operatorname{Ei}_{1}\left(-\frac{f(a d-b c) \ln (F)}{d(d x+c)}-\frac{(f b+d e) \ln (F)}{d}-\frac{-\ln (F) a f h+\ln (F) b f g-\ln (F) c e h+\ln (F) d e g}{h c-g d}\right) b c}{h(a d-b c)} \\
& +\frac{d F^{\frac{f b+d e}{d}} \operatorname{Ei}_{1}\left(-\frac{f(a d-b c) \ln (F)}{d(d x+c)}-\frac{(f b+d e) \ln (F)}{d}-\frac{-\ln (F) b f-d e \ln (F)}{d}\right) a}{h(a d-b c)} \\
& -\frac{F^{\frac{f b+d e}{d}} \operatorname{Ei}_{1}\left(-\frac{f(a d-b c) \ln (F)}{d(d x+c)}-\frac{(f b+d e) \ln (F)}{d}-\frac{-\ln (F) b f-d e \ln (F)}{d}\right) b c}{h(a d-b c)}
\end{aligned}
$$

[^3]$$
\int \frac{F^{e+\frac{f(b x+a)}{d x+c}}}{(h x+g)^{4}} \mathrm{~d} x
$$

Optimal(type 4, 618 leaves, 48 steps):

$$
\begin{aligned}
& \frac{d^{3} F^{e+\frac{b f}{d}-\frac{(-a d+b c) f}{d(d x+c)}}}{3 h(-h c+g d)^{3}}-\frac{F^{e+\frac{f(b x+a)}{d x+c}}}{3 h(h x+g)^{3}}+\frac{5 d^{2}(-a d+b c) f F^{e+\frac{b f}{d}-\frac{(-a d+b c) f}{d(d x+c)}} \ln (F)}{6(-h c+g d)^{4}}-\frac{(-a d+b c) f F^{e+\frac{f(b x+a)}{d x+c}} \ln (F)}{6(-h c+g d)^{2}(h x+g)^{2}} \\
& \quad-\frac{2 d(-a d+b c) f F^{e+\frac{f(b x+a)}{d x+c}} \ln (F)}{3(-h c+g d)^{3}(h x+g)}+\frac{d^{2}(-a d+b c) f F^{e+\frac{f(-a h+b g)}{-h c+g d}} \operatorname{Ei}\left(-\frac{(-a d+b c) f(h x+g) \ln (F)}{(-h c+g d)(d x+c)}\right) \ln (F)}{(-h c+g d)^{4}} \\
& \quad+\frac{d(-a d+b c)^{2} f^{2} F^{e+\frac{b f}{d}-\frac{(-a d+b c) f}{d(d x+c)}} h \ln (F)^{2}}{6(-h c+g d)^{5}}-\frac{(-a d+b c)^{2} f^{2} F^{e+\frac{f(b x+a)}{d x+c}} h \ln (F)^{2}}{6(-h c+g d)^{4}(h x+g)} \\
& \quad+\frac{d(-a d+b c)^{2} f^{2} F^{e+\frac{f(-a h+b g)}{-h c+g d}} h \operatorname{Ei}\left(-\frac{(-a d+b c) f(h x+g) \ln (F)}{(-h c+g d)(d x+c)}\right) \ln (F)^{2}}{(-h c+g d)^{5}} \\
& \quad+\frac{(-a d+b c)^{3} f^{3} F^{e+\frac{f(-a h+b g)}{-h c+g d}} h^{2} \operatorname{Ei}\left(-\frac{(-a d+b c) f(h x+g) \ln (F)}{(-h c+g d)(d x+c)}\right) \ln (F)^{3}}{6(-h c+g d)^{6}}
\end{aligned}
$$

Result(type ?, 4470 leaves): Display of huge result suppressed!
Problem 120: Result more than twice size of optimal antiderivative.

$$
\int f^{c x^{2}+b x+a}(e x+d)^{3} \mathrm{~d} x
$$

Optimal(type 4, 226 leaves, 10 steps):

$$
\begin{aligned}
& -\frac{e^{3} f^{c x^{2}+b x+a}}{2 c^{2} \ln (f)^{2}}+\frac{e(-b e+2 d c)^{2} f^{c x^{2}+b x+a}}{8 c^{3} \ln (f)}+\frac{e(-b e+2 d c) f^{c x^{2}+b x+a}(e x+d)}{4 c^{2} \ln (f)}+\frac{e f^{c x^{2}+b x+a}(e x+d)^{2}}{2 c \ln (f)} \\
& -\frac{3 e^{2}(-b e+2 d c) f^{a-\frac{b^{2}}{4 c}} \operatorname{erfi}\left(\frac{(2 c x+b) \sqrt{\ln (f)}}{2 \sqrt{c}}\right) \sqrt{\pi}}{8 c^{5 / 2} \ln (f)^{3 / 2}}+\frac{(-b e+2 d c)^{3} f^{a-\frac{b^{2}}{4 c} \operatorname{erfi}\left(\frac{(2 c x+b) \sqrt{\ln (f)}}{2 \sqrt{c}}\right) \sqrt{\pi}}}{16 c^{7 / 2 \sqrt{\ln (f)}}}
\end{aligned}
$$

Result(type 4, 552 leaves):

$$
-\frac{d^{3} \sqrt{\pi} f^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c \ln (f)} x+\frac{\ln (f) b}{2 \sqrt{-c \ln (f)}}\right)}{2 \sqrt{-c \ln (f)}}+\frac{e^{3} x^{2} f^{c} x^{2}+b x+a}{2 c \ln (f)}-\frac{e^{3} b x f^{c x^{2}}+b x+a}{4 c^{2} \ln (f)}+\frac{e^{3} b^{2} f^{c x^{2}+b x+a}}{8 c^{3} \ln (f)}
$$

$$
\begin{aligned}
& +\frac{e^{3} b^{3} \sqrt{\pi} f^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c \ln (f)} x+\frac{\ln (f) b}{2 \sqrt{-c \ln (f)}}\right)}{16 c^{3} \sqrt{-c \ln (f)}}-\frac{3 e^{3} b \sqrt{\pi} f^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c \ln (f)} x+\frac{\ln (f) b}{2 \sqrt{-c \ln (f)}}\right)}{8 c^{2} \ln (f) \sqrt{-c \ln (f)}}-\frac{e^{3} f^{c x^{2}+b x+a}}{2 c^{2} \ln (f)^{2}} \\
& +\frac{3 d e^{2} x f^{c x^{2}+b x+a}}{2 c \ln (f)}-\frac{3 d e^{2} b f^{c x^{2}+b x+a}}{4 c^{2} \ln (f)}-\frac{3 d e^{2} b^{2} \sqrt{\pi} f^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c \ln (f)} x+\frac{\ln (f) b}{2 \sqrt{-c \ln (f)}}\right)}{8 c^{2} \sqrt{-c \ln (f)}} \\
& +\frac{3 d e^{2} \sqrt{\pi} f^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c \ln (f)} x+\frac{\ln (f) b}{2 \sqrt{-c \ln (f)}}\right)}{4 c \ln (f) \sqrt{-c \ln (f)}}+\frac{3 d^{2} e f^{c x^{2}+b x+a}}{2 c \ln (f)}+\frac{3 d^{2} e b \sqrt{\pi} f^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c \ln (f)} x+\frac{\ln (f) b}{2 \sqrt{-c \ln (f)}}\right)}{4 c \sqrt{-c \ln (f)}}
\end{aligned}
$$

Problem 127: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{e}^{e x+d}}{x^{2}\left(c x^{2}+b x+a\right)} \mathrm{d} x
$$

Optimal(type 4, 184 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{\mathrm{e}^{e x+d}}{a x}-\frac{b \mathrm{e}^{d} \operatorname{Ei}(e x)}{a^{2}}+\frac{e \mathrm{e}^{d} \operatorname{Ei}(e x)}{a}+\frac{\mathrm{e}^{d-\frac{e\left(b+\sqrt{-4 a c+b^{2}}\right)}{2 c}} \operatorname{Ei}\left(\frac{e\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{2 a^{2}} \\
& \quad \mathrm{e}^{d-\frac{e\left(b-\sqrt{-4 a c+b^{2}}\right)}{2 c}} \operatorname{Ei}\left(\frac{e\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right) \\
& \quad+\frac{2 a^{2}}{}
\end{aligned}
$$

Result(type 4, 560 leaves):

$$
\begin{aligned}
& e\left(-\frac{\mathrm{e}^{e x+d}}{a x e}-\frac{(a e-b) \mathrm{e}^{d} \mathrm{Ei}_{1}(-e x)}{a^{2} e}-\frac{1}{2 a^{2} e \sqrt{-4 a c e^{2}+b^{2} e^{2}}}\right) \\
& -2 \mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) a c e \\
& +\mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b^{2} e+2 \mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}(\\
& \left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) a c e-\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b^{2} e
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}} b+\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(} \\
& \left.\left.\left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}} b\right)\right)
\end{aligned}
$$

Problem 128: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{e}^{e x+d}}{x\left(c x^{2}+b x+a\right)} \mathrm{d} x
$$

Optimal(type 4, 142 leaves, 7 steps):

Result(type 4, 368 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{e}^{d} \mathrm{Ei}_{1}(-e x)}{a}+\frac{1}{2 a \sqrt{-4 a c e^{2}+b^{2} e^{2}}}\left(\mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b e\right. \\
& -\mathrm{e}-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b e \\
& +\mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}}+\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(\mathrm{l}} \\
& \left.\left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}}\right)
\end{aligned}
$$

Problem 129: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{e}^{e x+d} x^{2}}{c x^{2}+b x+a} \mathrm{~d} x
$$

Optimal(type 4, 160 leaves, 7 steps):

$$
\begin{array}{r}
\frac{\mathrm{e}^{e x+d}}{c e}-\frac{\mathrm{e}^{d-\frac{e\left(b-\sqrt{-4 a c+b^{2}}\right)}{2 c}} \operatorname{Ei}\left(\frac{e\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{2}} \\
-\frac{\mathrm{e}^{d-\frac{e\left(b+\sqrt{-4 a c+b^{2}}\right)}{2 c}} \operatorname{Ei}\left(\frac{e\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{2}}
\end{array}
$$

Result(type 4, 1729 leaves):
$\frac{1}{e^{3}}\left(\frac{e^{2} \mathrm{e}^{e x+d}}{c}+\frac{1}{2 c^{2} \sqrt{-4 a c e^{2}+b^{2} e^{2}}}\left(e^{2}\left(2 \mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) a c e^{2}\right.\right.\right.$

$$
-\mathrm{e} \frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b^{2} e^{2}
$$

$$
+2 \mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b c d e=1 .}
$$

$$
-2 \mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \mathrm{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) c^{2} d^{2}-2 \mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(\mathrm{l}, \mathrm{l}}
$$

$$
\left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) a c e^{2}+\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b^{2} e^{2}
$$

$$
-2 \mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b c d e+2 \mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}(
$$

$$
\left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) c^{2} d^{2}
$$

$$
\begin{aligned}
& +\mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}} b e . . .} \\
& -2 \mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}} c d+\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(\\
& \left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}} b e-2 \mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(\\
& \left.\left.\left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}} c d\right)\right) \\
& -\frac{1}{\sqrt{-4 a c e^{2}+b^{2} e^{2}}}\left(d ^ { 2 } e ^ { 2 } \left(\mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right)-\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(\right.\right. \\
& \left.\left.\left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right)\right)\right)+\frac{1}{c \sqrt{-4 a c e^{2}+b^{2} e^{2}}}\left(d e^{2}(\right. \\
& -\mathrm{e} \frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b e \\
& +2 \mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) c d+\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(\\
& \left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) b e-2 \mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \operatorname{Ei}_{1}\left(-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) c d \\
& +\mathrm{e}^{\frac{-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c} \operatorname{Ei}_{1}\left(\frac{-2(e x+d) c-b e+2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}}+\mathrm{e}^{-\frac{b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}} \mathrm{Ei}_{1}(\mathrm{l}} \\
& \left.\left.\left.\left.-\frac{2(e x+d) c+b e-2 d c+\sqrt{-4 a c e^{2}+b^{2} e^{2}}}{2 c}\right) \sqrt{-4 a c e^{2}+b^{2} e^{2}}\right)\right)\right)
\end{aligned}
$$

Problem 130: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{e}^{e x+d} x^{3}}{c x^{2}+b x+a} d x
$$

Optimal(type 4, 203 leaves, 9 steps):

$$
\begin{aligned}
& \left.-\frac{\mathrm{e}^{e x+d}}{c e^{2}}-\frac{b \mathrm{e}^{e x+d}}{c^{2} e}+\frac{\mathrm{e}^{e x+d} x}{c e}+\frac{\mathrm{e}^{d-\frac{e\left(b-\sqrt{-4 a c+b^{2}}\right)}{2 c}} \operatorname{Ei}\left(\frac{e\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)\left(b^{2}-a c-\frac{b\left(-3 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right)}{2 c^{3}}\right) \\
& \quad \mathrm{e}^{d-\frac{e\left(b+\sqrt{-4 a c+b^{2}}\right)}{2 c}} \operatorname{Ei}\left(\frac{e\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}{2 c}\right)\left(b^{2}-a c+\frac{b\left(-3 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right) \\
& \left.+\frac{2 c^{3}}{2}\right)
\end{aligned}
$$

Result(type ?, 3531 leaves): Display of huge result suppressed!

Problem 133: Result more than twice size of optimal antiderivative.

$$
\int \frac{2^{x}}{a-2^{2 x} b} \mathrm{~d} x
$$

Optimal(type 3, 22 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{2^{x} \sqrt{b}}{\sqrt{a}}\right)}{\ln (2) \sqrt{a} \sqrt{b}}
$$

Result(type 3, 48 leaves):

$$
\frac{\ln \left(2^{x}+\frac{a}{\sqrt{a b}}\right)}{2 \sqrt{a b} \ln (2)}-\frac{\ln \left(2^{x}-\frac{a}{\sqrt{a b}}\right)}{2 \sqrt{a b} \ln (2)}
$$

Problem 134: Unable to integrate problem.

$$
\int \frac{2^{x}}{\sqrt{a-4^{x} b}} \mathrm{~d} x
$$

Optimal (type 3, 26 leaves, 3 steps):

$$
\frac{\arctan \left(\frac{2^{x} \sqrt{b}}{\sqrt{a-4^{x} b}}\right)}{\ln (2) \sqrt{b}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{2^{x}}{\sqrt{a-4^{x} b}} \mathrm{~d} x
$$

Problem 141: Result more than twice size of optimal antiderivative.

$$
\int \frac{d+e f^{h x+g}}{a+b f^{h x+g}+c f^{2 h x+2 g}} \mathrm{~d} x
$$

Optimal(type 3, 97 leaves, 7 steps):

$$
\frac{d x}{a}-\frac{d \ln \left(a+b f^{h x+g}+c f^{h x+2 g}\right)}{2 a h \ln (f)}+\frac{(-2 a e+d b) \operatorname{arctanh}\left(\frac{b+2 c f^{h x+g}}{\sqrt{-4 a c+b^{2}}}\right)}{a h \ln (f) \sqrt{-4 a c+b^{2}}}
$$

Result(type 3, 992 leaves):

$$
\begin{aligned}
& \frac{4 \ln (f)^{2} a c d h^{2} x}{4 \ln (f)^{2} a^{2} c h^{2}-\ln (f)^{2} a b^{2} h^{2}}-\frac{\ln (f)^{2} b^{2} d h^{2} x}{4 \ln (f)^{2} a^{2} c h^{2}-\ln (f)^{2} a b^{2} h^{2}}+\frac{4 \ln (f)^{2} a c d g h}{4 \ln (f)^{2} a^{2} c h^{2}-\ln (f)^{2} a b^{2} h^{2}}-\frac{\ln (f)^{2} b^{2} d g h}{4 \ln (f)^{2} a^{2} c h^{2}-\ln (f)^{2} a b^{2} h^{2}} \\
& -\frac{2 \ln \left(f^{h x+g}+\frac{2 a b e-b^{2} d+\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}}{2 c(2 a e-d b)}\right) c d}{\left(4 a c-b^{2}\right) h \ln (f)} \\
& +\frac{\ln \left(f^{h x+g}+\frac{2 a b e-b^{2} d+\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}}{2 c(2 a e-d b)}\right) b^{2} d}{2 a\left(4 a c-b^{2}\right) h \ln (f)}+\frac{1}{2 a\left(4 a c-b^{2}\right) h \ln (f)}\left(\operatorname { l n } \left(f^{h x+g}\right.\right. \\
& \left.+\frac{2 a b e-b^{2} d+\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}}{2 c(2 a e-d b)}\right) \\
& \left.\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}\right) \\
& -\frac{2 \ln \left(f^{h x+g}-\frac{-2 a b e+b^{2} d+\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}}{2 c(2 a e-d b)}\right) c d}{\left(4 a c b^{2}\right) h(f)} \\
& \left(4 a c-b^{2}\right) h \ln (f) \\
& +\frac{\ln \left(f^{h x+g}-\frac{-2 a b e+b^{2} d+\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}}{2 c(2 a e-d b)}\right) b^{2} d}{2 a\left(4 a c-b^{2}\right) h \ln (f)} \\
& 2 a\left(4 a c-b^{2}\right) h \ln (f) \\
& -\frac{1}{2 a\left(4 a c-b^{2}\right) h \ln (f)}\left(\operatorname { l n } \left(f^{h x+g}\right.\right. \\
& \left.-\frac{-2 a b e+b^{2} d+\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}}{2 c(2 a e-d b)}\right)
\end{aligned}
$$

$$
\left.\sqrt{-16 a^{3} c e^{2}+4 a^{2} b^{2} e^{2}+16 a^{2} b c d e-4 a b^{3} d e-4 a b^{2} c d^{2}+b^{4} d^{2}}\right)
$$

Problem 144: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{a+b f^{-d x-c}+c f^{d x+c}} \mathrm{~d} x
$$

Optimal(type 3, 43 leaves, 4 steps):

$$
-\frac{2 \operatorname{arctanh}\left(\frac{a+2 c f^{d x+c}}{\sqrt{a^{2}-4 b c}}\right)}{d \ln (f) \sqrt{a^{2}-4 b c}}
$$

Result(type 3, 134 leaves):

$$
\frac{\ln \left(f^{-d x-c}+\frac{a \sqrt{a^{2}-4 b c}+a^{2}-4 b c}{2 b \sqrt{a^{2}-4 b c}}\right)}{\sqrt{a^{2}-4 b c} d \ln (f)}-\frac{\ln \left(f^{-d x-c}+\frac{a \sqrt{a^{2}-4 b c}-a^{2}+4 b c}{2 b \sqrt{a^{2}-4 b c}}\right)}{\sqrt{a^{2}-4 b c} d \ln (f)}
$$

Problem 145: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{a+b f^{-d x-c}+c f^{d x+c}} \mathrm{~d} x
$$

Optimal(type 4, 187 leaves, 8 steps):

$$
\frac{x \ln \left(1+\frac{2 c f^{d x+c}}{a-\sqrt{a^{2}-4 b c}}\right)}{d \ln (f) \sqrt{a^{2}-4 b c}}-\frac{x \ln \left(1+\frac{2 c f^{d x+c}}{a+\sqrt{a^{2}-4 b c}}\right)}{d \ln (f) \sqrt{a^{2}-4 b c}}+\frac{\operatorname{polylog}\left(2,-\frac{2 c f^{d x+c}}{a-\sqrt{a^{2}-4 b c}}\right)}{d^{2} \ln (f)^{2} \sqrt{a^{2}-4 b c}}-\frac{\operatorname{polylog}\left(2,-\frac{2 c f^{d x+c}}{a+\sqrt{a^{2}-4 b c}}\right)}{d^{2} \ln (f)^{2} \sqrt{a^{2}-4 b c}}
$$

Result(type 4, 425 leaves):

$\ln (f) d \sqrt{a^{2}-4 b c} \quad \ln (f) d \sqrt{a^{2}-4 b c}$
$\ln (f) d^{2} \sqrt{a^{2}-4 b c}$

$$
+\frac{\ln \left(\frac{2 b f^{-d x-c}+\sqrt{a^{2}-4 b c}+a}{a+\sqrt{a^{2}-4 b c}}\right) c}{\ln (f) d^{2} \sqrt{a^{2}-4 b c}}+\frac{\operatorname{dilog}\left(\frac{-2 b f^{-d x-c}+\sqrt{a^{2}-4 b c}-a}{-a+\sqrt{a^{2}-4 b c}}\right)}{\ln (f)^{2} d^{2} \sqrt{a^{2}-4 b c}}-\frac{\operatorname{dilog}\left(\frac{2 b f^{-d x-c}+\sqrt{a^{2}-4 b c}+a}{a+\sqrt{a^{2}-4 b c}}\right)}{\ln (f)^{2} d^{2} \sqrt{a^{2}-4 b c}}
$$

$$
+\frac{2 c \arctan \left(\frac{2 b f^{-d x-c}+a}{\sqrt{-a^{2}+4 b c}}\right)}{\ln (f) d^{2} \sqrt{-a^{2}+4 b c}}
$$

Problem 147: Unable to integrate problem.

$$
\int \frac{a+b F^{\frac{c \sqrt{e x+d}}{\sqrt{-e f x+d f}}}}{-e^{2} x^{2}+d^{2}} \mathrm{~d} x
$$

Optimal(type 4, 60 leaves, 4 steps):

$$
\frac{b \operatorname{Ei}\left(\frac{c \ln (F) \sqrt{e x+d}}{\sqrt{-e f x+d f}}\right)}{d e}+\frac{a \ln \left(\frac{\sqrt{e x+d}}{\sqrt{-e f x+d f}}\right)}{d e}
$$

Result(type 8, 43 leaves):

$$
\int \frac{a+b F^{\frac{c \sqrt{e x+d}}{\sqrt{-e f x+d f}}}}{-e^{2} x^{2}+d^{2}} \mathrm{~d} x
$$

Problem 149: Unable to integrate problem.

$$
\int \frac{\left(F^{\frac{\sqrt{-a x+1}}{\sqrt{a x+1}}}\right)^{n}}{-a^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 4, 66 leaves, 3 steps):

$$
-\frac{\left(F^{\frac{\sqrt{-a x+1}}{\sqrt{a x+1}}}\right)^{n} \operatorname{Ei}\left(\frac{n \ln (F) \sqrt{-a x+1}}{\sqrt{a x+1}}\right)}{a F^{\frac{n \sqrt{-a x+1}}{\sqrt{a x+1}}}}
$$

Result(type 8, 35 leaves):

$$
\int \frac{\left(F^{\frac{\sqrt{-a x+1}}{\sqrt{a x+1}}}\right)^{n}}{-a^{2} x^{2}+1} \mathrm{~d} x
$$

Problem 150: Unable to integrate problem.

$$
\int \frac{F \frac{3 \sqrt{-a x+1}}{\sqrt{a x+1}}}{-a^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 4, 25 leaves, 2 steps):

$$
-\frac{\operatorname{Ei}\left(\frac{3 \ln (F) \sqrt{-a x+1}}{\sqrt{a x+1}}\right)}{a}
$$

Result(type 8, 34 leaves):

$$
\int \frac{F \frac{3 \sqrt{-a x+1}}{\sqrt{a x+1}}}{-a^{2} x^{2}+1} \mathrm{~d} x
$$

Problem 151: Unable to integrate problem.

$$
\int \frac{F^{\frac{\sqrt{-a x+1}}{\sqrt{a x+1}}}}{-a^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 4, 24 leaves, 2 steps):

$$
-\frac{\operatorname{Ei}\left(\frac{\ln (F) \sqrt{-a x+1}}{\sqrt{a x+1}}\right)}{a}
$$

Result(type 8, 33 leaves):

$$
\int \frac{F^{\frac{\sqrt{-a x+1}}{\sqrt{a x+1}}}}{-a^{2} x^{2}+1} \mathrm{~d} x
$$

Problem 152: Unable to integrate problem.

$$
\int \frac{1}{\frac{\sqrt{-a x+1}}{F^{\sqrt{a x+1}}}\left(-a^{2} x^{2}+1\right)} \mathrm{d} x
$$

Optimal(type 4, 25 leaves, 2 steps):
$-\frac{\operatorname{Ei}\left(-\frac{\ln (F) \sqrt{-a x+1}}{\sqrt{a x+1}}\right)}{a}$

Result(type 8, 35 leaves):

$$
\int \frac{1}{\frac{\sqrt{-a x+1}}{F^{\sqrt{a x+1}}}\left(-a^{2} x^{2}+1\right)} \mathrm{d} x
$$

Problem 153: Result more than twice size of optimal antiderivative.

$$
\int \frac{a^{x} b^{x}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 26 leaves, 3 steps):

$$
-\frac{a^{x} b^{x}}{x}+\operatorname{Ei}(x(\ln (a)+\ln (b)))(\ln (a)+\ln (b))
$$

Result(type 4, 159 leaves):
$-\ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)\left(\frac{1}{x \ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)}+1-\ln (x)-\mathrm{I} \pi-\ln (\ln (b))-\ln \left(1+\frac{\ln (a)}{\ln (b)}\right)-\frac{2 x \ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)+2}{2 x \ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)}+\frac{\mathrm{e}^{x \ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)}}{x \ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)}\right.$
$\left.+\ln \left(-x \ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)\right)+\mathrm{Ei}_{1}\left(-x \ln (b)\left(1+\frac{\ln (a)}{\ln (b)}\right)\right)\right)$

Problem 154: Unable to integrate problem.

$$
\int \frac{\left(d+e \mathrm{e}^{i x+h}\right)(g x+f)^{3}}{a+b \mathrm{e}^{i x+h}+c \mathrm{e}^{2 i x+2 h}} \mathrm{~d} x
$$

Optimal(type 4, 692 leaves, 13 steps):

$$
\begin{aligned}
& \frac{(g x+f)^{4}\left(e+\frac{-b e+2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{4 g\left(b-\sqrt{-4 a c+b^{2}}\right)}-\frac{(g x+f)^{3} \ln \left(1+\frac{2 c \mathrm{e}^{i x+h}}{b-\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{-b e+2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{i\left(b-\sqrt{-4 a c+b^{2}}\right)} \\
& \quad-\frac{3 g(g x+f)^{2} \text { polylog }\left(2,-\frac{2 c \mathrm{e}^{i x+h}}{b-\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{-b e+2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{i^{2}\left(b-\sqrt{-4 a c+b^{2}}\right)}+\frac{6 g^{2}(g x+f) \operatorname{polylog}\left(3,-\frac{2 c \mathrm{e}^{i x+h}}{b-\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{-b e+2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{i\left(b-\sqrt{-4 a c+b^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{6 g^{3} \text { polylog }\left(4,-\frac{2 c \mathrm{e}^{i x+h}}{b-\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{-b e+2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{l^{4}\left(b-\sqrt{-4 a c+b^{2}}\right)}+\frac{(g x+f)^{4}\left(e+\frac{b e-2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{4 g\left(b+\sqrt{-4 a c+b^{2}}\right)} \\
& -\frac{(g x+f)^{3} \ln \left(1+\frac{2 c \mathrm{e}^{i x+h}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{b e-2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{i\left(b+\sqrt{-4 a c+b^{2}}\right)}-\frac{3 g(g x+f)^{2} \operatorname{polylog}\left(2,-\frac{2 c \mathrm{e}^{i x+h}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{b e-2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{i^{2}\left(b+\sqrt{-4 a c+b^{2}}\right)} \\
& +\frac{6 g^{2}(g x+f) \operatorname{polylog}\left(3,-\frac{2 c \mathrm{e}^{i x+h}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{b e-2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{\dot{i}^{3}\left(b+\sqrt{-4 a c+b^{2}}\right)}-\frac{6 g^{3} \operatorname{polylog}\left(4,-\frac{2 c \mathrm{e}^{i x+h}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(e+\frac{b e-2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{i^{4}\left(b+\sqrt{-4 a c+b^{2}}\right)}
\end{aligned}
$$

Result(type 8, 43 leaves):

$$
\int \frac{\left(d+e \mathrm{e}^{i x+h}\right)(g x+f)^{3}}{a+b \mathrm{e}^{i x+h}+c \mathrm{e}^{2 i x+2 h}} \mathrm{~d} x
$$

Problem 155: Unable to integrate problem.

$$
\int F^{a+b \ln \left(c+d x^{n}\right)} x^{2} \mathrm{~d} x
$$

Optimal(type 5, 66 leaves, 4 steps):

$$
\frac{F^{a} x^{3}\left(c+d x^{n}\right)^{b \ln (F)} \text { hypergeom }\left(\left[\frac{3}{n},-b \ln (F)\right],\left[\frac{3+n}{n}\right],-\frac{d x^{n}}{c}\right)}{3\left(1+\frac{d x^{n}}{c}\right)^{b \ln (F)}}
$$

Result(type 8, 20 leaves):

$$
\int F^{a+b \ln \left(c+d x^{n}\right)} x^{2} \mathrm{~d} x
$$

Problem 156: Unable to integrate problem.

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)^{2}\right)} \mathrm{d} x
$$

Optimal(type 4, 99 leaves, 3 steps):

$$
\frac{F^{a f}(e x+d) \operatorname{erfi}\left(\frac{1+2 b f n \ln (F) \ln \left(c(e x+d)^{n}\right)}{2 n \sqrt{b} \sqrt{f} \sqrt{\ln (F)}}\right) \sqrt{\pi}}{2 e \mathrm{e}^{\frac{1}{4 b f n^{2} \ln (F)}} n\left(c(e x+d)^{n}\right)^{\frac{1}{n}} \sqrt{b} \sqrt{f} \sqrt{\ln (F)}}
$$

Result(type 8, 22 leaves):

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)^{2}\right)} \mathrm{d} x
$$

Problem 157: Unable to integrate problem.

$$
\int \frac{F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)^{2}\right)}}{(e g x+g d)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 102 leaves, 3 steps):

$$
-\frac{F^{a f}\left(c(e x+d)^{n}\right)^{\frac{2}{n}} \operatorname{erfi}\left(\frac{1-b f n \ln (F) \ln \left(c(e x+d)^{n}\right)}{n \sqrt{b} \sqrt{f} \sqrt{\ln (F)}}\right) \sqrt{\pi}}{2 e \mathrm{e}^{\frac{1}{b f n^{2} \ln (F)}} g^{3} n(e x+d)^{2} \sqrt{b} \sqrt{f} \sqrt{\ln (F)}}
$$

Result(type 8, 33 leaves):

$$
\int \frac{F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)^{2}\right)}}{(e g x+g d)^{3}} \mathrm{~d} x
$$

Problem 158: Unable to integrate problem.

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)^{2}\right)} \mathrm{d} x
$$

Optimal(type 4, 99 leaves, 3 steps):

$$
\frac{F^{a f}(e x+d) \operatorname{erfi}\left(\frac{1+2 b f n \ln (F) \ln \left(c(e x+d)^{n}\right)}{2 n \sqrt{b} \sqrt{f} \sqrt{\ln (F)}}\right) \sqrt{\pi}}{2 e \mathrm{e}^{\frac{1}{4 b f n^{2} \ln (F)}} n\left(c(e x+d)^{n}\right)^{\frac{1}{n}} \sqrt{b} \sqrt{f} \sqrt{\ln (F)}}
$$

Result(type 8, 22 leaves):

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)^{2}\right)} \mathrm{d} x
$$

Problem 160: Unable to integrate problem.

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)\right)^{2}}(e g x+g d) \mathrm{d} x
$$

Optimal(type 4, 112 leaves, 4 steps):

$$
\frac{g(e x+d)^{2} \operatorname{erfi}\left(\frac{\frac{1}{n}+a b f \ln (F)+b^{2} f \ln (F) \ln \left(c(e x+d)^{n}\right)}{b \sqrt{f} \sqrt{\ln (F)}}\right) \sqrt{\pi}}{2 b e e^{\frac{1+2 a b f n \ln (F)}{b^{2} f n^{2} \ln (F)}} n\left(c(e x+d)^{n}\right)^{\frac{2}{n}} \sqrt{f} \sqrt{\ln (F)}}
$$

Result(type 8, 31 leaves):

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)\right)^{2}}(e g x+g d) \mathrm{d} x
$$

Problem 161: Unable to integrate problem.

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 111 leaves, 4 steps):

$$
\frac{(e x+d) \operatorname{erfi}\left(\frac{\frac{1}{n}+2 a b f \ln (F)+2 b^{2} f \ln (F) \ln \left(c(e x+d)^{n}\right)}{2 b \sqrt{f} \sqrt{\ln (F)}}\right) \sqrt{\pi}}{2 b e \mathrm{e}^{\frac{1+4 a b f n \ln (F)}{4 b^{2} f n^{2} \ln (F)}} n\left(c(e x+d)^{n}\right)^{\frac{1}{n}} \sqrt{f} \sqrt{\ln (F)}}
$$

Result(type 8, 22 leaves):

$$
\int F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)\right)^{2}} \mathrm{~d} x
$$

Problem 162: Unable to integrate problem.

$$
\int \frac{F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)\right)^{2}}}{(e g x+g d)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 114 leaves, 4 steps):

Result(type 8, 33 leaves):

$$
\int \frac{F^{f\left(a+b \ln \left(c(e x+d)^{n}\right)\right)^{2}}}{(e g x+g d)^{3}} \mathrm{~d} x
$$

Problem 211: Unable to integrate problem.

$$
\int f^{a+b x^{n}} g^{c+d x^{n}} \mathrm{~d} x
$$

Optimal(type 4, 50 leaves, 2 steps):

$$
-\frac{f^{a} g^{c} x \Gamma\left(\frac{1}{n},-x^{n}(b \ln (f)+d \ln (g))\right)}{n\left(-x^{n}(b \ln (f)+d \ln (g))\right)^{\frac{1}{n}}}
$$

Result(type 8, 21 leaves):

$$
\int f^{a+b x^{n}} g^{c+d x^{n}} \mathrm{~d} x
$$

Problem 212: Unable to integrate problem.

$$
\int f^{(b x+a)^{n}}(b x+a)^{m} \mathrm{~d} x
$$

Optimal(type 4, 57 leaves, 1 step):

$$
-\frac{(b x+a)^{1+m} \Gamma\left(\frac{1+m}{n},-(b x+a)^{n} \ln (f)\right)}{b n\left(-(b x+a)^{n} \ln (f)\right)^{\frac{1+m}{n}}}
$$

Result(type 8, 19 leaves):

$$
\int f^{(b x+a)^{n}}(b x+a)^{m} \mathrm{~d} x
$$

Summary of Integration Test Results

266 integration problems

A - 176 optimal antiderivatives
B - 41 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 49 unable to integrate problems
E - O integration timeouts

[^0]: Problem 15: Unable to integrate problem.

[^1]: Problem 77: Result more than twice size of optimal antiderivative.

[^2]: Optimal(type 3, 58 leaves, 3 steps):

[^3]: Problem 113: Result more than twice size of optimal antiderivative.

